- Определение перпендикулярности прямой и плоскости
- Проведение перпендикуляра из точки к прямой
- Как построить перпендикуляр к прямой
- Пояснение на примерах
- Что такое перпендикулярные прямые в геометрии
- Виды перпендикулярных прямых, как обозначаются
- Теорема о перпендикулярных прямых
- Свойство перпендикулярных прямых
- Пример задачи на построение перпендикулярных прямых для 7 класса
- Докажите, что через две скрещивающиеся прямые можно провести параллельные плоскости (рис. 36)
- Скрещивающиеся прямые. Проведение через одну из скрещивающихся прямых плоскости, параллельной другой прямой
- Признак скрещивающихся прямых
- Расстояние между скрещивающимися прямыми
- Общий перпендикуляр к двум скрещивающимся прямым
- Угол между скрещивающимися прямыми
- Геометрия. 10 класс
- Введение в стереометрию. Параллельность
- Сколько плоскостей проходит через две пересекающиеся прямые и одну из параллельных прямых
- Построение сечений в стереометрии
- Взаимное расположение прямых и плоскостей в стереометрии
- Теорема о трех перпендикулярах
- Двугранный угол
- Симметрия фигур
- Призма
- Параллелепипед
Определение перпендикулярности прямой и плоскости
Каким будет определение положения прямой и плоскости, зависит от наличия общих точек. Если их больше одной, то прямая лежит на данной плоскости, если одна — то она ее пересекает. Если прямая не имеет с плоскостью точек пересечения, то прямая и плоскость параллельны.
Пересечение прямой линии и плоскости может происходить под разными углами. Если при пересечении между прямой и плоскостью образуется прямой угол, то такая прямая является к плоскости перпендикуляром. При этом она перпендикулярна всем прямым линиям, принадлежащим данной плоскости. Из этого свойства вытекает следующее определение.
Перпендикулярной к плоскости называется прямая линия, которая перпендикулярна всем без исключения прямым, лежащим в выбранной плоскости.
Следствием из данного определения является свойство плоскости, для которой установлено наличие перпендикуляра. Оно формулируется следующим образом: «Если плоскость перпендикулярна некоторой прямой, то она является также перпендикулярной для всех прямых, параллельных данной прямой».
В решении задач на построение перпендикуляров к плоскости в конкретной точке существует только одно решение, поскольку через определенную точку можно провести только одну прямую, занимающую по отношению к плоскости перпендикулярное положение.
О единственности такой прямой в геометрии существует доказательство.
Проведение перпендикуляра из точки к прямой
В жизни с перпендикуляром можно столкнуться часто. Например, если по двум параллельным направляющим движутся тела, то кратчайшее расстояние между ними будет лежать именно по перпендикуляру.
Допустим, на уроке ученикам дали задание построить перпендикуляр к имеющейся площади. Особым условием является то, что проходить этот перпендикуляр должен через выбранную точку. Технически задача проста. Для ее исполнения нужен чертежный треугольник, один угол у которого является прямым, то есть составляет 90°.
Приложив его к прямой таким образом, что одна из сторон, образующих прямой угол, лежит на прямой, а другая — проходит через точку с определенными координатами, необходимо соединить эту точку и прямую.
Для перпендикуляра, проведенного из выбранной точки к прямой, можно определить длину. Она равна расстоянию от этой точки до точки пересечения с прямой плоскостью.
Как построить перпендикуляр к прямой
Построить перпендикуляр к прямой можно несколькими способами:
1. С помощью циркуля.
Из выбранной точки P проводим полуокружность, которая пересекается с прямой в точках A и B.
Затем тем же радиусом строим две окружности, центры которых совпадают с точками A и B. При этом окружности проходят через точку P.
Следующим шагом будет соединение точек P и Q.
На данном рисунке перпендикуляр к прямой AB — отрезок PQ.
2. Вторым способом построения перпендикуляра является использование транспортира. Чтобы провести перпендикуляр, внимательно откладываем 90° от выбранной точки на прямой, используя при этом линейку транспортира. Отрезок, соединяющий эту точку и деление 90°, является перпендикуляром к прямой в заданной точке.
3. Третий способ был описан выше. Он основан на применении чертежного треугольника и линейки. С помощью линейки проводим прямую. Прикладываем к ней прямым углом треугольник и очерчиваем этот угол с двух сторон. Один отрезок совпадает с имеющейся прямой, а второй является перпендикуляром к ней.
Пояснение на примерах
В конспектах по геометрии присутствует понятие высоты, представляющей собой перпендикуляр к одной из сторон геометрической фигуры (например, треугольника).
Высотой треугольника называется перпендикуляр, который выходит из вершины треугольника и следует к противоположной стороне (либо к продолжению этой стороны, если треугольник тупоугольный).
В данном определении содержится отличие от основной характеристики биссектрисы, которая, опускаясь на противолежащую углу сторону, не является перпендикуляром к ней.
Аналогичная ситуация с определением медианы — линии, исходящей из угла треугольника и делящей противоположную сторону на две равные части.
Высоту треугольника можно провести из любого его угла, поэтому у каждого треугольника имеется три высоты.
Существует теорема, что все три высоты треугольника пересекаются в одной точке, которая называется ортоцентром.
Используя свойство высоты треугольника о пересечении одной из его сторон под прямым углом, можно через высоту выразить формулу площади треугольника:
Уравнение для расчета высоты через площадь:
Найти через длины сторон:
где p — это полупериметр треугольника, который рассчитывается так:
p=a+b+c2Можно дать краткую характеристику еще двум способам выразить высоту треугольника:
4. Через длину прилежащей стороны и синус угла
5. Через стороны и радиус описанной окружности
Что такое перпендикулярные прямые в геометрии
Прямые на плоскости могут располагаться параллельно друг другу, совпадать или пересекаться. Перпендикулярные прямые — частный случай пересекающихся прямых.
Прямые, пересекающиеся под углом 90°, называются перпендикулярными.
Когда прямые пересекаются, образуется четыре угла.
Если один из них прямой, то и остальные три будут прямыми. Так происходит, потому что сумма двух смежных углов равна 180°. Равны и вертикальные, то есть противолежащие, углы.
Виды перпендикулярных прямых, как обозначаются
Если рассматривать трехмерное пространство, то взаимно перпендикулярными могут быть не только пересекающиеся прямые.
Две прямые в пространстве перпендикулярны друг другу, если они соответственно параллельны некоторым двум другим взаимно перпендикулярным прямым, лежащим в одной плоскости.
Перпендикулярность обозначают символом «⊥». Например, если а и b взаимно перпендикулярны, пишут а⊥b.
Теорема о перпендикулярных прямых
Через каждую точку прямой можно провести перпендикулярную прямую, причем только одну.
Используем метод доказательства от противного: предположим, что теорема не верна.
- На прямой с отметим точки А и С. Из точки А построим луч под углом 900 к лучу АС и отметим на нем точку В. ∠САВ=900.
- Предположим, что в образовавшейся полуплоскости есть ещё одна прямая, перпендикулярная с и проходящая через точку А. На ней находится точка D.
- ∠САВ=900 и ∠САD=900. Относительно луча АС они лежат в одной полуплоскости. Но это невозможно, так как от луча АС в данной полуплоскости можно отложить только один ∠900. Следовательно в точке А к прямой с можно провести только один перпендикуляр. Теорема доказана.
Свойство перпендикулярных прямых
Две прямые, перпендикулярные третьей, не пересекаются.
Пример задачи на построение перпендикулярных прямых для 7 класса
Приведем примеры, которые помогут в самостоятельном выполнении заданий.
Докажите, что через две скрещивающиеся прямые можно провести параллельные плоскости (рис. 36)
2.14. Докажите, что через две скрещивающиеся прямые можно провести параллельные плоскости (рис. 36).
3.06. Постройте сечение пятиугольной пирамиды PABCDE плоскостью α, которая проходит через внутреннюю точку М основания ABCDE параллельно грани РAB (рис. 37).
3.08. Точка В не лежит в плоскости ΔAEC, точки М, К и Р – середины отрезков соответственно АВ, ВС и ВЕ (рис.39). а) Докажите, что плоскости МКР и АЕС параллельны. б) Найдите площадь ΔМКР, если площадь ΔAEC равна 48 см 2 .
б) По формуле Герона:


, как средние линии соответствующих треугольников. Подставим данные значения в формулу:


3.09. Три отрезка А1А2, В1В2 и С1С2, не лежащие в одной плоскости, имеют общую середину. Докажите, что плоскости А1В1С1 и А2В2С2 параллельны (рис. 40).


3.10. Прямая DF пересекает параллельные плоскости α, β и γ соответственно в точках D, Е и F, при этом DF = 3, ЕF = 9 (рис. 41). Прямая EG пересекает плоскости α и γ соответственно в точках G и Н, при этом EG = 12. Найдите длину GН.
Решение: Прямые EF и ЕH задают плоскость EFH, которая пересекает плоскости α и γ по прямым GD и FH соответственно. ∆GED
3.11. Плоскости α и β пересекаются по прямой с (рис. 42). Через точки А и В, расположенные вне этих плоскостей, проводятся параллельно плоскости β и параллельные между собой прямые АС и BD (

), а также – параллельно плоскости α и параллельные между собой прямые АЕ и BF (



5.3. Уроки проверки знаний, умений и навыков
Для проверки знаний, умений и навыков разработаны три задачи на выявление типов оперирования пространственными образами: изменение пространственного положения образа (I тип); преобразование структуры образа (II тип); изменение положения и структуры образа одновременно (III тип).
1. Через вершины параллелограмма ABCD, лежащего в одной из двух параллельных плоскостей, проведены параллельные прямые, пересекающие вторую плоскость в точках А1, В1, С1 и D1. Докажите, что четырехугольник А1В1С1D1 тоже параллелограмм (рис. 43).


Скрещивающиеся прямые. Проведение через одну из скрещивающихся прямых плоскости, параллельной другой прямой

На этом уроке мы рассмотрим определение скрещивающихся прямых и докажем теорему – признак скрещивающихся прямых. Далее рассмотрим три случая взаимного расположения двух прямых в пространстве. Докажем теорему о том, что через каждую из скрещивающихся прямых можно провести плоскость, параллельную другой прямой. В конце урока решим несколько задач в тетраэдре на скрещиваемость прямых.
Скрещивающиеся прямые – прямые, которые невозможно поместить в одну плоскость, то есть они не параллельны и не пересекаются.

Признак скрещивающихся прямых
Если одна из прямых лежит в плоскости, а вторая пересекает эту плоскость в точке, отличной от точек первой прямой, то такие прямые – скрещивающиеся .
Расстояние между скрещивающимися прямыми

Через две скрещивающиеся прямые можно провести две параллельные плоскости (единственным образом).
Расстояние между скрещивающимися прямыми – есть расстояние между этими плоскостями.
Общий перпендикуляр к двум скрещивающимся прямым

Общим перпендикуляром к двум скрещивающимся прямым называется отрезок, перпендикулярный каждой из двух скрещивающихся прямых, концы которого лежат на этих прямых.
Длина общего перпендикуляра равна расстоянию между скрещивающимися прямыми.
Угол между скрещивающимися прямыми
Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым.
(Одну из прямых можно вполне и не переносить параллельно самой себе, а ограничиться только параллельным переносом одной из прямых до пересечения со второй).

Чтобы не потерять страничку, вы можете сохранить ее у себя:
Геометрия. 10 класс
Определение. Плоскости, которые не пересекаются, называются параллельными.
Признак параллельности плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.
Свойства параллельных плоскостей.
Теорема 1. Если две параллельные плоскости пересекаются третьей, то линии их пересечения параллельны.
Теорема 2. Отрезки параллельных прямых, заключенных между двумя параллельными плоскостями, равны.
Теорема 3. Если прямая пересекает одну из двух параллельных плоскостей, то она пересекает и другую.
Теорема 4. Если плоскость пересекает одну из двух параллельных плоскостей, то она пересекает и другую плоскость.
Теорема 5. Через точку, не лежащую в данной плоскости, можно провести плоскость, параллельную данной, и притом только одну.
Параллельность плоскостей

Разберём и докажем теорему.
Пусть нам даны плоскость α и точка М, ей не принадлежащая.
Докажем, что существует плоскость β, которой принадлежит точка М, параллельная плоскости α.
В данной плоскости α проведём две произвольные пересекающиеся прямые a и b. Через точку M проведём прямые a1 и b1, параллельные соответственно a и b. Плоскость, проходящую через пересекающиеся прямые a1 и b1, обозначим β. На основании признака параллельности плоскостей плоскость β параллельна плоскости α.
Докажем методом от противного, что β – единственная плоскость, удовлетворяющая условию теоремы.
Допустим, что через точку M проходит другая плоскость, например β1, параллельная α.
Так как β1 пересекает плоскость β (они имеют общую точку M), то по теореме 4 плоскость β1 пересекает и плоскость α (β ‖ α). Мы пришли к противоречию. Таким образом, предположение о том, что через точку M можно провести плоскость, отличную от плоскости β и параллельную плоскости α, неверно. Значит, плоскость β – единственна. Теорема доказана.
Введение в стереометрию. Параллельность
Важные аксиомы стереометрии
1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.Таким образом, любая плоскость однозначно задается тремя точками, не лежащими на одной прямой: (pi=(ABC)) (рис. 1).
2. Если две точки прямой лежат в некоторой плоскости, то и вся прямая лежит в этой плоскости: (ain pi) .Говорят также, что плоскость содержит прямую: (pisubset a) (рис. 2).
3. Если две плоскости имеют общую точку, то они имеют и общую прямую, на которой лежат все общие точки этих плоскостей.Таким образом, если плоскости пересекаются, то они пересекаются по прямой: (picap mu=p) .Данная прямая (p) называется линией пересечения плоскостей (рис. 3).

Заметим, что плоскость обычно изображают в виде внутренности параллелограмма. Почему? Посмотрите, например, сбоку на стол. В виде какой фигуры выглядит столешница?
Следствия из аксиом
1. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна (рис. 4).
2. Через две пересекающиеся прямые проходит плоскость, и притом только одна (рис. 5).

1. Действительно, отметим на прямой (a) некоторые две точки (A) и (B) . Тогда мы получим три точки (A, B, C) , не лежащие на одной прямой. Через них можно провести единственную плоскость (pi) . А т.к. две выбранные точки (A) и (B) прямой лежат в этой плоскости, то и вся прямая лежит в этой плоскости.
2. Действительно, пусть (O) – точка пересечения данных прямых (p) и (q) . Отметим еще по одной точке (P) и (Q) на каждой прямой (отличающиеся от точки (O) ). Получили три точки (P, Q, O) , не лежащие на одной прямой. Через них проходит единственная плоскость (pi) . А т.к. две точки каждой прямой лежат в этой плоскости, то и все точки каждой прямой будут лежать в этой плоскости.
Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.
Через две параллельные прямые проходит плоскость, и притом только одна.
Через любую точку (A) в пространстве, не лежащую на данной прямой (b) , проходит прямая (a) , параллельная данной, и притом только одна.
Через точку (A) и прямую (b) можно провести единственную плоскость (по аксиоме); пусть эта плоскость называется (pi) . Прямая (a) , параллельная прямой (b) , должна лежать с ней в одной плоскости, а также должна проходить через точку (A) , следовательно, должна лежать в плоскости (pi) . Но в плоскости через точку, не лежащую на прямой, можно провести ровно одну прямую, параллельную данной (теорема планиметрии), чтд.
Если одна из двух параллельных прямых пересекает плоскость, то и другая прямая пересекает эту плоскость.
Пусть (aparallel b) и (acap pi=A) . Докажем, что и (b) пересечет плоскость (pi) (назовем их точку пересечения (B) ).

Проведем через прямые (a) и (b) плоскость (mu) (это возможно в силу определения параллельных прямых). Тогда плоскости (pi) и (mu) имеют общую точку (A) , следовательно, имеют и общую прямую (p) , на которой лежат все их общие точки. Но т.к. (bparallel a) и (acap p=A) , то прямая (b) тоже пересекает прямую (p) . Значит, прямая (b) пересекает и плоскость (mu) (это и есть точка (B) ).
Теорема 3: о параллельности трех прямых
Если прямая (a) параллельна прямой (b) , а та в свою очередь параллельна прямой (c) , то (aparallel c) .
1) Отметим некоторую точку (C) на прямой (c) и проведем плоскость (pi) через прямую (a) и точку (C) . Прямая (c) будет лежать в этой плоскости. Действительно, т.к. прямая (c) и плоскость (pi) имеют общую точку (C) , то в противном случае прямая (c) будет пересекать эту плоскость. Но т.к. (bparallel c) , то и прямая (b) будет пересекать (pi) ; а т.к. (aparallel b) , то и прямая (a) будет пересекать эту плоскость. А это противоречит нашему построению.
2) Теперь прямые (a) и (c) лежат в одной плоскости, значит, они могут либо пересекаться, либо быть параллельны. Предположим, что (c) пересекает (a) в точке (A) . Тогда получается, что через точку (A) проведены две прямые, параллельные прямой (b) , что противоречит теореме 1.
Существует три вида взаимного расположения прямой и плоскости:
1. прямая имеет с плоскостью две общие точки (то есть лежит в плоскости) — рис. 4;
2. прямая имеет с плоскостью ровно одну общую точку (то есть пересекает плоскость) — рис. 6;
3. прямая не имеет с плоскостью общих точек (то есть параллельна плоскости).
Теорема 4: признак параллельности прямой и плоскости
Если прямая (a) , не лежащая в плоскости (pi) , параллельна некоторой прямой (p) , лежащей в плоскости (pi) , то она параллельна данной плоскости (рис. 7).

Докажем, что прямая (a) не может пересекать плоскость (pi) (случай, что прямая лежит в плоскости, невозможен по условию). Предположим, что это не так. Во-первых, проведем плоскость (mu) через прямые (a) и (p) (значит, плоскости (pi) и (mu) пересекаются по прямой (p) ). Во-вторых, пусть (acappi=A) . Т.к. (aparallel p) , то точка (A) не может лежать на прямой (p) . Значит, плоскости (pi) и (mu) имеют еще одну общую точку (A) , не лежащую на их линии пересечения, что противоречит аксиоме 3. Чтд.
Пусть прямая (p) параллельна плоскости (mu) . Если плоскость (pi) проходит через прямую (p) и пересекает плоскость (mu) , то линия пересечения плоскостей (pi) и (mu) — прямая (m) — параллельна прямой (p) (рис. 8).

Т.к. прямые (m) и (p) лежат в одной плоскости (pi) , то они могут быть либо параллельны, либо пересекаться, либо совпадать. Совпадать они не могут, потому что тогда (pin mu) , а это противоречит условию. Если (mcap p=O) , то (p) пересекает плоскость (mu) в точке (O) , что опять же противоречит условию. Значит, (mparallel p) .
Если прямые (a) и (b) параллельны и прямая (a) также параллельна плоскости (alpha) , то и прямая (b) либо параллельна, либо лежит в плоскости (alpha) .
Существует три типа взаимного расположения плоскостей в пространстве: совпадают (имеют три общие точки, не лежащие на одной прямой), пересекаются (имеют общие точки, лежащие строго на одной прямой), и не имеют общих точек.
Если две плоскости не имеют общих точек, то они называются параллельными плоскостями.
Теорема 5: признак параллельности плоскостей
Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.
Рассмотрим две плоскости (pi) и (mu) и в них пересекающиеся прямые (a, b) и (a_1, b_1) соответственно, такие что (aparallel a_1, bparallel b_1) . Докажем, что плоскости не имеют общих точек.

Предположим, что это не так. Пусть плоскости имеют общую точку, значит они имеют и общую прямую (y) : (picap mu=y) . Данная прямая не может быть параллельна обеим прямым (a) и (b) (т.к. они все лежат в одной плоскости (pi) ), значит, хотя бы одну из этих прямых она пересекает. Пусть это будет прямая (a) , то есть (acap y=Y) . Т.к. прямая (y) лежит и в плоскости (mu) , то (Yin mu) , то есть прямая (a) имеет с плоскостью (mu) общую точку (Y) . Но это невозможно, т.к. по признаку параллельности прямой и плоскости прямая (a) параллельна плоскости (mu) . Чтд.
Если две параллельные плоскости (alpha) и (eta) пересечены третьей плоскостью (gamma) , то линии пересечения плоскостей также параллельны:
Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны:
Сколько плоскостей проходит через две пересекающиеся прямые и одну из параллельных прямых
- Многогранник представляет собой геометрическое тело, ограниченное конечным числом плоских многоугольников, любые два из которых, имеющие общую сторону, не лежат в одной плоскости. При этом сами многоугольники называются гранями, их стороны – ребрами многогранника, а их вершины – вершинами многогранника.
- Фигура, образованная всеми гранями многогранника, называется его поверхностью (полной поверхностью), а сумма площадей всех его граней – площадью (полной) поверхности.
- Куб – это многогранник, имеющий шесть граней, которые являются равными квадратами. Стороны квадратов называются ребрами куба, а вершины – вершинами куба.
- Параллелепипед – это многогранник, у которого шесть граней и каждая из них – параллелограмм. Стороны параллелограммов называются ребрами параллелепипеда, а их вершины – вершинами параллелепипеда. Две грани параллелепипеда называются противолежащими, если они не имеют общего ребра, а имеющие общее ребро называются смежными. Иногда какие-нибудь две противолежащие грани параллелепипеда выделяются и называются основаниями, тогда остальные грани – боковыми гранями, а их стороны, соединяющие вершины оснований параллелепипеда, – его боковыми ребрами.
- Прямой параллелепипед – это такой параллелепипед, у которого боковые грани – прямоугольники.Прямоугольный параллелепипед – это параллелепипед, у которого все грани – прямоугольники. Заметим, что всякий прямоугольный параллелепипед является прямым параллелепипедом, но не любой прямой параллелепипед есть прямоугольный.
- Две вершины параллелепипеда, не принадлежащие одной грани, называются противолежащими. Отрезок, соединяющий противолежащие вершины параллелепипеда, называется диагональю параллелепипеда. У параллелепипеда всего четыре диагонали.
- Призма (n-угольная) – это многогранник, у которого две грани – равные n-угольники, а остальные n граней – параллелограммы. Равные n-угольники называются основаниями, а параллелограммы – боковыми гранями призмы. Прямая призма – это такая призма, у которой боковые грани – прямоугольники. Правильная n-угольная призма – это призма, у которой все боковые грани – прямоугольники, а ее основания – правильныеn-угольники.
- Сумма площадей боковых граней призмы называется площадью ее боковой поверхности (обозначаетсяS бок ). Сумма площадей всех граней призмы называется площадью поверхности призмы (обозначаетсяS полн ).
- Пирамида (n-угольная) – это многогранник, у которого одна грань – какой-нибудь n-угольник, а остальные nграней – треугольники с общей вершиной; n-угольник называется основанием; треугольники, имеющие общую вершину, называются боковыми гранями, а их общая вершина называется вершиной пирамиды. Стороны граней пирамиды называются ее ребрами, а ребра, сходящиеся в вершине, называются боковыми.
- Сумма площадей боковых граней пирамиды называется площадью боковой поверхности пирамиды(обозначается S бок ). Сумма площадей всех граней пирамиды называется площадью поверхности пирамиды (площадь поверхности обозначается S полн ).
- Правильнаяn-угольная пирамида – это такая пирамида, основание которой – правильный n-угольник, а все боковые ребра равны между собой. У правильной пирамиды боковые грани – равные друг другу равнобедренные треугольники.
- Треугольная пирамида называется тетраэдром, если все ее грани – равные правильные треугольники. Тетраэдр является частным случаем правильной треугольной пирамиды (т.е. не каждая правильная треугольная пирамида будет тетраэдром).
- Через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.
- Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости.
- Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
Следствия из аксиом стереометрии:
- Теорема 1. Через прямую и не лежащую на ней точку проходит единственная плоскость.
- Теорема 2. Через две пересекающиеся прямые проходит единственная плоскость.
- Теорема 3. Через две параллельные прямые проходит единственная плоскость.
Построение сечений в стереометрии
Для решения задач по стереометрии остро необходимо умение строить на рисунке сечения многогранников (например, пирамиды, параллелепипеда, куба, призмы) некоторой плоскостью. Дадим несколько определений, поясняющих, что такое сечение:
- Секущей плоскостью пирамиды (призмы, параллелепипеда, куба) называется такая плоскость, по обе стороны от которой есть точки данной пирамиды (призмы, параллелепипеда, куба).
- Сечением пирамиды (призмы, параллелепипеда, куба) называется фигура, состоящая из всех точек, которые являются общими для пирамиды (призмы, параллелепипеда, куба) и секущей плоскости.
- Секущая плоскость пересекает грани пирамиды (параллелепипеда, призмы, куба) по отрезкам, поэтомусечение есть многоугольник, лежащий в секущей плоскости, сторонами которого являются указанные отрезки.
Для построения сечения пирамиды (призмы, параллелепипеда, куба) можно и нужно построить точки пересечения секущей плоскости с ребрами пирамиды (призмы, параллелепипеда, куба) и соединить каждые две из них, лежащие в одной грани. Заметим, что последовательность построения вершин и сторон сечения не существенна. В основе построения сечений многогранников лежит две задачи на построение:
Для построения прямой, по которой пересекаются некоторые две плоскости α и β (например, секущая плоскость и плоскость грани многогранника), нужно построить две их общие точки, тогда прямая, проходящая через эти точки, есть линия пересечения плоскостей α и β.
Для построения точки пересечения прямой l и плоскости α нужно построить точку пересечения прямой l и прямойl 1 , по которой пересекаются плоскость α и любая плоскость, содержащая прямую l.
Взаимное расположение прямых и плоскостей в стереометрии
Определение: В ходе решения задач по стереометрии две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Если прямые а и b, либо AB и CDпараллельны, то пишут:

- Теорема 1. Через любую точку пространства, не лежащую на данной прямой, проходит единственная прямая, параллельная данной прямой.
- Теорема 2. Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.
- Теорема 3 (признак параллельности прямых). Если две прямые параллельны третьей прямой, то они параллельны между собой.
- Теорема 4 (о точке пересечения диагоналей параллелепипеда). Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
Возможны три случая взаимного расположения прямой и плоскости в стереометрии:
- Прямая лежит в плоскости (каждая точка прямой лежит в плоскости).
- Прямая и плоскость пересекаются (имеют единственную общую точку).
- Прямая и плоскость не имеют ни одной общей точки.
Определение: Прямая и плоскость называются параллельными, если они не имеют общих точек. Если прямаяа параллельна плоскости β, то пишут:

- Теорема 1 (признак параллельности прямой и плоскости). Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
- Теорема 2. Если плоскость (на рисунке – α) проходит через прямую (на рисунке – с), параллельную другой плоскости (на рисунке – β), и пересекает эту плоскость, то линия пересечения плоскостей (на рисунке – d) параллельна данной прямой:


Если две различные прямые лежат в одной плоскости, то они либо пересекаются, либо параллельны. Однако, в пространстве (т.е. в стереометрии) возможен и третий случай, когда не существует плоскости, в которой лежат две прямые (при этом они и не пересекаются, и не параллельны).
Определение: Две прямые называются скрещивающимися, если не существует плоскости, в которой они обе лежат.
- Теорема 1 (признак скрещивающихся прямых). Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещивающиеся.
- Теорема 2. Через каждую из двух скрещивающихся прямых проходит единственная плоскость, параллельная другой прямой.
Теперь введем понятие угла между скрещивающимися прямыми. Пусть a и b – две скрещивающиеся прямые. Возьмем произвольную точку O в пространстве и проведем через нее прямые a 1 и b 1 , параллельные прямым a иb соответственно. Углом между скрещивающимися прямыми a и b называется угол между построенными пересекающимися прямыми a 1 и b 1 .
Однако на практике точку O чаще выбирают так, чтобы она принадлежала одной из прямых. Это обычно не только элементарно удобнее, но и рациональнее и правильнее с точки зрения построения чертежа и решения задачи. Поэтому для угла между скрещивающимися прямыми дадим такое определение:
Определение: Пусть a и b – две скрещивающиеся прямые. Возьмем произвольную точку O на одной из них (в нашем случае, на прямой b) и проведем через неё прямую параллельную другой из них (в нашем случае a 1 параллельна a). Углом между скрещивающимися прямыми a и b называется угол между построенной прямой и прямой, содержащей точку O (в нашем случае это угол β между прямыми a 1 и b).

Определение: Две прямые называются взаимно перпендикулярными (перпендикулярными), если угол между ними равен 90°. Перпендикулярными могут быть как скрещивающиеся прямые, так и прямые лежащие и пересекающиеся в одной плоскости. Если прямая a перпендикулярна прямой b, то пишут:

Определение: Две плоскости называются параллельными, если они не пересекаются, т.е. не имеют общих точек. Если две плоскости α и β параллельны, то, как обычно, пишут:

- Теорема 1 (признак параллельности плоскостей). Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.
- Теорема 2 (о свойстве противолежащих граней параллелепипеда). Противолежащие грани параллелепипеда лежат в параллельных плоскостях.
- Теорема 3 (о прямых пересечения двух параллельных плоскостей третьей плоскостью). Если две параллельные плоскости пересечены третьей, то прямые их пересечения параллельны между собой.
- Теорема 4. Отрезки параллельных прямых, расположенные между параллельными плоскостями, равны.
- Теорема 5 (о существовании единственной плоскости, параллельной данной плоскости и проходящей через точку вне ее). Через точку, не лежащую в данной плоскости, проходит единственная плоскость, параллельная данной.
Определение: Прямая, пересекающая плоскость, называется перпендикулярной плоскости, если она перпендикулярна каждой прямой, лежащей в этой плоскости. Если прямая a перпендикулярна плоскости β, то пишут, как обычно:

- Теорема 1. Если одна из двух параллельных прямых перпендикулярна третьей прямой, то и другая прямая перпендикулярна этой прямой.
- Теорема 2. Если одна из двух параллельных прямых перпендикулярна плоскости, то и другая прямая перпендикулярна этой плоскости.
- Теорема 3 (о параллельности прямых, перпендикулярных плоскости). Если две прямые перпендикулярны одной плоскости, то они параллельны.
- Теорема 4 (признак перпендикулярности прямой и плоскости). Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости.
- Теорема 5 (о плоскости, проходящей через данную точку и перпендикулярной данной прямой). Через любую точку пространства проходит единственная плоскость, перпендикулярная данной прямой.
- Теорема 6 (о прямой, проходящей через данную точку и перпендикулярной данной плоскости). Через любую точку пространства проходит единственная прямая, перпендикулярная данной плоскости.
- Теорема 7 (о свойстве диагонали прямоугольного параллелепипеда). Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его ребер, имеющих общую вершину:

Следствие: Все четыре диагонали прямоугольного параллелепипеда равны между собой.
Теорема о трех перпендикулярах
Пусть точка А не лежит на плоскости α. Проведем через точку А прямую, перпендикулярную плоскости α, и обозначим буквой О точку пересечения этой прямой с плоскостью α. Перпендикуляром, проведенным из точки А к плоскости α, называется отрезок АО, точка О называется основанием перпендикуляра. Если АО – перпендикуляр к плоскости α, а М – произвольная точка этой плоскости, отличная от точки О, то отрезок АМ называется наклонной, проведенной из точки А к плоскости α, а точка М – основанием наклонной. Отрезок ОМ – ортогональная проекция (или, короче, проекция) наклонной АМ на плоскость α. Теперь приведем теорему, которая играет важную роль при решении многих задач.

Теорема 1 (о трех перпендикулярах): Прямая, проведенная в плоскости и перпендикулярная проекции наклонной на эту плоскость, перпендикулярна и самой наклонной. Верно и обратное утверждение:
Теорема 2 (о трех перпендикулярах): Прямая, проведенная в плоскости и перпендикулярная наклонной, перпендикулярна и ее проекции на эту плоскость. Данные теоремы, для обозначений с чертежа выше можно кратко сформулировать так:

Теорема: Если из одной точки, взятой вне плоскости, проведены к этой плоскости перпендикуляр и две наклонные, то:
- две наклонные, имеющие равные проекции, равны;
- из двух наклонных больше та, проекция которой больше.
Определения расстояний объектами в пространстве:
- Расстоянием от точки до плоскости называется длина перпендикуляра, проведенного из этой точки к данной плоскости.
- Расстоянием между параллельными плоскостями называется расстояние от произвольной точки одной из параллельных плоскостей до другой плоскости.
- Расстоянием между прямой и параллельной ей плоскостью называется расстояние от произвольной точки прямой до плоскости.
- Расстоянием между скрещивающимися прямыми называется расстояние от одной из скрещивающихся прямых до плоскости, проходящей через другую прямую и параллельной первой прямой.
Определение: В стереометрии ортогональной проекцией прямой a на плоскость α называется проекция этой прямой на плоскость α в случае, если прямая, определяющая направление проектирования, перпендикулярна плоскости α.

Замечание: Как видно из предыдущего определения, проекций бывает много. Другие (кроме ортогональной) проекции прямой на плоскость можно построить если прямая определяющая направление проецирования будет не перпендикулярна плоскости. Однако, именно ортогональную проекцию прямой на плоскость в будущем мы будем встречать в задачах. А называть ортогональную проекцию будем просто проекцией (как на чертеже).
Определение: Углом между прямой, не перпендикулярной плоскости, и этой плоскостью называется угол между прямой и ее ортогональной проекцией на данную плоскость (угол АОА’ на чертеже выше).
Теорема: Угол между прямой и плоскостью является наименьшим из всех углов, которые данная прямая образует с прямыми, лежащими в данной плоскости и проходящими через точку пересечения прямой и плоскости.
Двугранный угол
- Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой и частью пространства, для которой эти полуплоскости служат границей.
- Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру.

Таким образом, линейный угол двугранного угла – это угол, образованный пересечением двугранного угла плоскостью, перпендикулярной его ребру. Все линейные углы двугранного угла равны между собой. Градусной мерой двугранного угла называется градусная мера его линейного угла.
Двугранный угол называется прямым (острым, тупым), если его градусная мера равна 90° (меньше 90°, больше 90°). В дальнейшем, при решении задач по стереометрии, под двугранным углом будем понимать всегда тот линейный угол, градусная мера которого удовлетворяет условию:

- Двугранным углом при ребре многогранника называется двугранный угол, ребро которого содержит ребро многогранника, а грани двугранного угла содержат грани многогранника, которые пересекаются по данному ребру многогранника.
- Углом между пересекающимися плоскостями называется угол между прямыми, проведенными соответственно в данных плоскостях перпендикулярно их линии пересечения через некоторую ее точку.
- Две плоскости называются перпендикулярными, если угол между ними равен 90°.
- Теорема 1 (признак перпендикулярности плоскостей). Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
- Теорема 2. Прямая, лежащая в одной из двух перпендикулярных плоскостей и перпендикулярная прямой, по которой они пересекаются, перпендикулярна другой плоскости.
Симметрия фигур
- Точки M и M 1 называются симметричными относительно точки O, если O является серединой отрезка MM 1 .
- Точки M и M 1 называются симметричными относительно прямой l, если прямая l проходит через середину отрезка MM 1 и перпендикулярна ему.
- Точки M и M 1 называются симметричными относительно плоскости α, если плоскость α проходит через середину отрезка MM 1 и перпендикулярна этому отрезку.
- Точка O (прямая l, плоскость α) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно точки O (прямой l, плоскости α) некоторой точке этой же фигуры.
- Выпуклый многогранник называется правильным, если все его грани – равные между собой правильные многоугольники и в каждой вершине сходится одно и то же число ребер.
Призма
- Призма – многогранник, две грани которого являются равными многоугольниками, лежащими в параллельных плоскостях, а остальные грани – параллелограммами, имеющими общие стороны с этими многоугольниками.
- Основания – это две грани, являющиеся равными многоугольниками, лежащими в параллельных плоскостях. На чертеже это: ABCDE и KLMNP.
- Боковые грани – все грани, кроме оснований. Каждая боковая грань обязательно является параллелограммом. На чертеже это: ABLK, BCML, CDNM, DEPN и EAKP.
- Боковая поверхность – объединение боковых граней.
- Полная поверхность – объединение оснований и боковой поверхности.
- Боковые ребра – общие стороны боковых граней. На чертеже это: AK, BL, CM, DN и EP.
- Высота – отрезок, соединяющий основания призмы и перпендикулярный им. На чертеже это, например, KR.
- Диагональ – отрезок, соединяющий две вершины призмы, не принадлежащие одной грани. На чертеже это, например, BP.
- Диагональная плоскость – плоскость, проходящая через боковое ребро призмы и диагональ основания. Другое определение: диагональная плоскость – плоскость, проходящая через два боковых ребра призмы, не принадлежащих одной грани.
- Диагональное сечение – пересечение призмы и диагональной плоскости. В сечении образуется параллелограмм, в том числе, иногда, его частные случаи – ромб, прямоугольник, квадрат. На чертеже это, например, EBLP.
- Перпендикулярное (ортогональное) сечение – пересечение призмы и плоскости, перпендикулярной ее боковому ребру.

Свойства и формулы для призмы:
- Основания призмы являются равными многоугольниками.
- Боковые грани призмы являются параллелограммами.
- Боковые ребра призмы параллельны и равны.
- Объём призмы равен произведению её высоты на площадь основания:

где: S осн – площадь основания (на чертеже это, например, ABCDE), h – высота (на чертеже это MN).

- Перпендикулярное сечение перпендикулярно ко всем боковым рёбрам призмы (на чертеже ниже перпендикулярное сечение это A 2 B 2 C 2 D 2 E 2 ).
- Углы перпендикулярного сечения – это линейные углы двугранных углов при соответствующих боковых рёбрах.
- Перпендикулярное (ортогональное) сечение перпендикулярно ко всем боковым граням.
- Объем наклонной призмы равен произведению площади перпендикулярного сечения на длину бокового ребра:

где: S сеч – площадь перпендикулярного сечения, l – длина бокового ребра (на чертеже ниже это, например, AA 1 или BB 1 и так далее).

где: P сеч – периметр перпендикулярного сечения, l – длина бокового ребра.

Виды призм в стереометрии:
- Если боковые ребра не перпендикулярны основанию, то такая призма называется наклонной (изображены выше). Основания такой призмы, как обычно, расположены в параллельных плоскостях, боковые рёбра не перпендикулярны этим плоскостям, но параллельны между собой. Боковые грани – параллелограммы.
- Прямая призма – призма, у которой все боковые ребра перпендикулярны основанию. В прямой призме боковые ребра являются высотами. Боковые грани прямой призмы — прямоугольники. А площадь и периметр основания равны соответственно площади и периметру перпендикулярного сечения (у прямой призмы, вообще говоря, перпендикулярное сечение целиком является такой же фигурой, как и основания). Поэтому, площадь боковой поверхности прямой призмы равна произведению периметра основания на длину бокового ребра (или, в данном случае, высоту призмы):


где: P осн – периметр основания прямой призмы, l – длина бокового ребра, равная в прямой призме высоте (h). Объем прямой призмы находится по общей формуле: V = S осн ∙h = S осн ∙l.

Свойства правильной призмы:
- Основания правильной призмы являются правильными многоугольниками.
- Боковые грани правильной призмы являются равными прямоугольниками.
- Боковые ребра правильной призмы равны между собой.
- Правильная призма является прямой.
Параллелепипед
Определение: Параллелепипед – это призма, основания которой параллелограммы. В этом определении ключевым словом является «призма». Таким образом, параллелепипед – это частный случай призмы, которая отличается от общего случая только тем, что в основании у нее не произвольный многоугольник, а именно параллелограмм. Поэтому все приведенные выше свойства, формулы и определения касающиеся призмы остаются актуальными и для параллелепипеда. Однако, можно выделить несколько дополнительных свойств характерных для параллелепипеда.

Другие свойства и определения:
- Две грани параллелепипеда, не имеющие общего ребра, называются противолежащими, а имеющие общее ребро – смежными.
- Две вершины параллелепипеда, не принадлежащие одной грани, называются противолежащими.
- Отрезок, соединяющий противолежащие вершины, называется диагональю параллелепипеда.
- Параллелепипед имеет шесть граней и все они – параллелограммы.
- Противоположные грани параллелепипеда попарно равны и параллельны.
- У параллелепипеда четыре диагонали; они все пересекаются в одной точке, и каждая из них делится этой точкой пополам.
- Если четыре боковые грани параллелепипеда – прямоугольники (а основания – произвольные параллелограммы), то он называется прямым (в этом случае, как и у прямой призмы, все боковые ребра перпендикулярны основаниям). Все свойства и формулы для прямой призмы актуальны для прямого параллелепипеда.
- Параллелепипед называется наклонным, если не все его боковые грани являются прямоугольниками.
- Объем прямого или наклонного параллелепипеда рассчитывается по общей формуле для объема призмы, т.е. равен произведению площади основания параллелепипеда на его высоту (V = S осн ∙h).
- Прямой параллелепипед, у которого все шесть граней – прямоугольники (т.е. кроме боковых граней еще и основания являются прямоугольниками), называется прямоугольным. Для прямоугольного параллелепипеда актуальны все свойства прямого параллелепипеда, а также:Диагональ прямоугольного параллелепипедаd и его рёбра a, b, c связаны соотношением:
- Диагональ прямоугольного параллелепипедаd и его рёбра a, b, c связаны соотношением:


- Прямоугольный параллелепипед, все грани которого являются равными квадратами, называется кубом. Помимо прочего, куб является правильной четырехугольной призмой, и вообще правильным многогранником. Для куба справедливы все свойства прямоугольного параллелепипеда и свойства правильных призм, а также:Абсолютно все рёбра куба равны между собой.Диагональ кубаd и длина его ребра a связаны соотношением:
- Абсолютно все рёбра куба равны между собой.
- Диагональ кубаd и длина его ребра a связаны соотношением:



