Для того чтобы складывать и вычитать дроби с разными знаменателями, вам нужно привести их к общему знаменателю. Процессы сложения и вычитания дробей очень похожи; только на конечном этапе вы должны либо сложить, либо вычесть числители дробей. Если вы хотите научиться складывать и вычитать дроби с разными знаменателями, выполните следующие действия.
- Запишите дроби рядом друг с другом. Напишите их так, чтобы числители дробей (верхние числа) и знаменатели дробей (нижние числа) располагались напротив друг друга. Например, рассмотрим дроби 9/11 и 2/4.
- Уясните, что такое эквивалентные дроби. Если умножить числитель и знаменатель определенной дроби на некоторое число, то вы получите эквивалентную дробь, равную исходной дроби. Например, если вы умножите дробь 2/4 на 2, вы получите дробь 4/8, которая равна (эквивалентна) исходной дроби 2/4. Вы можете проверить это следующим образом:
Нарисуйте круг, разделите его на четыре равные части и закрасьте две из них (2/4).Нарисуйте еще один круг, разделите его на 8 равных частей и закрасьте четыре из них (4/8).Сравните закрашенные области обоих кругов; они соответствуют дробям 2/4 и 4/8. Размер закрашенных областей будет одинаковым. - Нарисуйте круг, разделите его на четыре равные части и закрасьте две из них (2/4).
- Нарисуйте еще один круг, разделите его на 8 равных частей и закрасьте четыре из них (4/8).
- Сравните закрашенные области обоих кругов; они соответствуют дробям 2/4 и 4/8. Размер закрашенных областей будет одинаковым.
- Перемножьте два знаменатели, чтобы найти общий знаменатель. Для того чтобы сложить или вычесть дроби, нужно привести их к общему знаменателю; общий знаменатель – это число, делителями которого являются знаменатели данных дробей. Простейший способ найти общий знаменатель дробей – это перемножить их знаменатели. Сделав это, переходите к следующему разделу или продолжайте читать этот раздел и узнаете, как найти наименьший общий знаменатель (НОЗ).
В нашем примере 11 и 4 – это знаменатели дробей 9 / и 2 /
Перемножьте эти знаменатели: 11 x 4 = . - В нашем примере 11 и 4 – это знаменатели дробей 9 / и 2 /
- Перемножьте эти знаменатели: 11 x 4 = .
- Найдите наименьший общий знаменатель (НОЗ). Это наименьшее число, которое делится на знаменатели данных дробей. Для вычисления НОЗ запишите кратные каждого знаменателя данных дробей. Подчеркните наименьшее число, которое встречается в обоих списках. На этот раз рассмотрим такой пример: 5/6 + 2/9.
В нашем примере знаменатели равны 6 и 9, поэтому для первого знаменателя пишите числа, делящиеся на 6, а для второго – на 9.Кратные 6: 6, 12, , 24Кратные 9: 9, , 27, 36Так как число – это наименьшее число, находящееся в обоих списках, то НОЗ = 18. - В нашем примере знаменатели равны 6 и 9, поэтому для первого знаменателя пишите числа, делящиеся на 6, а для второго – на 9.
- Кратные 6: 6, 12, , 24
- Кратные 9: 9, , 27, 36
- Так как число – это наименьшее число, находящееся в обоих списках, то НОЗ = 18.
Умение складывать дробей — это очень полезный навык, который пригодится не только в школе, но и в повседневной жизни. В этой статье мы расскажем вам, как складывать дроби.
- Посмотрите на знаменатели (числа под чертой) дробей. Если они одинаковые, вам даны дроби с одинаковыми (равными) знаменателями; в противном случае перейдите в следующий раздел.
- Рассмотрим два примера, на основе которых продемонстрируем, как складывать дроби с равными знаменателями.Пример 1: 1/4 + 2/4Пример 2: 3/8 + 2/8 + 4/8
- Пример 1: 1/4 + 2/4
- Пример 2: 3/8 + 2/8 + 4/8
- Сложите числители (числа над чертой). Если знаменатели дробей равны, просто сложите числители.
Пример 1: 1/4 + 2/4. Здесь числа «1» и «2» являются числителями, поэтому 1 + 2 = 3.Пример 2: 3/8 + 2/8 + 4/8. Здесь числа «3», «2» и «4» являются числителями, поэтому 3 + 2 + 4 = 9. - Пример 1: 1/4 + 2/4. Здесь числа «1» и «2» являются числителями, поэтому 1 + 2 = 3.
- Пример 2: 3/8 + 2/8 + 4/8. Здесь числа «3», «2» и «4» являются числителями, поэтому 3 + 2 + 4 = 9.
- Запишите конечную дробь. Найденную сумму числителей запишите в числителе новой дроби. Теперь запишите одинаковый знаменатель в знаменателе новой дроби, то есть исходный знаменатель не меняется.
Пример 1: 3 — это числитель, а 4 — знаменатель конечной дроби. Таким образом, 1/4 + 2/4 = 3/4.Пример 2: 9 — это числитель, а 8 — знаменатель конечной дроби. Таким образом, 3/8 + 2/8 + 4/8 = 9/8. - Пример 1: 3 — это числитель, а 4 — знаменатель конечной дроби. Таким образом, 1/4 + 2/4 = 3/4.
- Пример 2: 9 — это числитель, а 8 — знаменатель конечной дроби. Таким образом, 3/8 + 2/8 + 4/8 = 9/8.
- Упростите конечную дробь (если нужно).Если числитель больше знаменателя (как в Примере 2), преобразуйте такую неправильную дробь в смешанное число. Для этого разделите числитель на знаменатель. В нашем примере 9/8 = 1 и остаток 1. Теперь целочисленный результат деления запишите перед новой дробью, в ее числителе запишите остаток, а ее знаменателем будет знаменатель исходной дроби. Таким образом,9/8 = 1 1/8.
- Если числитель больше знаменателя (как в Примере 2), преобразуйте такую неправильную дробь в смешанное число. Для этого разделите числитель на знаменатель. В нашем примере 9/8 = 1 и остаток 1. Теперь целочисленный результат деления запишите перед новой дробью, в ее числителе запишите остаток, а ее знаменателем будет знаменатель исходной дроби. Таким образом,9/8 = 1 1/8.
На первый взгляд складывать дроби с разными знаменателями довольно сложно, но если привести их к общему знаменателю, все станет гораздо проще. Если вы работаете с неправильными дробями, у которых числители больше знаменателей, сделайте знаменатели одинаковыми, а затем сложите числители. Если нужно сложить смешанные числа, преобразуйте их в неправильные дроби, приведите их к общему знаменателю, а затем сложите числители.
- Например, сложите дроби 9/5 + 14/7. Кратными знаменателя 5 являются 5, 10, 15, 20, 25, 30, 35, а кратными знаменателя 7 — 7, 14, 21, 28, 35. Итак, 35 является наименьшим общим кратным.
- В нашем примере умножьте 9/5 на 7, чтобы получить знаменатель 35. Числитель также умножьте на 7; таким образом, вы получите дробь 63/35.
- В нашем примере умножьте 14/7 на 5, чтобы получить дробь 70/35. Таким образом, исходная задача 9/5 + 14/7 перепишется так: 63/35 + 70/35.
- В нашем примере: 63 + 70 = 133. Запишите этот результат над знаменателем, чтобы получить дробь 133/35.
- Например, дробь 133/35 можно превратить в смешанное число 3 28/35. Теперь дробь 28/35 сократите до 4/5. Таким образом, окончательный ответ равен 3 4/5.
- Например, сложите 6 3/8 + 9 1/24. Эти смешанные числа превратятся в дроби 51/8 + 217/24.
- Кратными 8 являются 8, 16, 24, 32, 48, а кратными 24 — 24, 48, 72. Итак, НОК равен 24.
- Например, чтобы дробь 51/8 привести к знаменателю 24, умножьте числитель и знаменатель на 3. Вы получите дробь 153/24.
- В нашем примере вторая дробь 217/24, то есть ее знаменатель уже равен НОК. Таким образом, эту дробь менять не нужно.
- В нашем примере: 153/24 + 217/24 = 370/24.
- В нашем примере 370/24 = 15 10/24, потому что 370/24 = 15 ост. 10. Дробь 10/24 можно сократить до 5/12. Таким образом, окончательный ответ равен 15 5/12.
Об этой статье
- 1 / 2 + 3 / 8 =
- 2 / 5 + 1 / 3 = 11 / 15
- 3 / 4 + 4 / 8 =
- 10 / 3 + 3 / 9 =
- 5 / 6 + 8 / 5 =
- 2 / 17 + 4 / 5 = 78 / 85
- 2 / 3 – 5 / 9 =
- 15 / 20 – 3 / 5 = 3 / 20
- 7 / 8 – 7 / 9 = 7 / 72
- 3 / 5 – 4 / 7 = 1 / 35
- 7 / 12 – 3 / 8 = 5 / 24
- 16 / 5 – 1 / 4 =
Советы
- Перед тем как сложить числители дробей, убедитесь, что их знаменатели одинаковы.
- Не складывайте знаменатели. Найдите общий знаменатель и не меняйте его.
- Если нужно сложить правильную или неправильную дробь со смешанным числом, сначала преобразуйте смешанное число в неправильную дробь, а затем используйте действия, описанные в этой статье.
