Калькулятор дробей выполнит основные арифметические действия с дробями и смешанными числами.
Если целая часть заполнена, калькулятор приведет смешанное число в неправильную дробь и выполнит операцию.
Заполните поля калькулятора чтобы найти сумму, разность, произведение и отношение дробей.
Основные операции с дробями
Чтобы сложить дроби с разными знаменателями необходимо: привести дробные части к наименьшему общему знаменателю;
затем сложить их числители. Рассмотрим на примере как сложить две дроби с разными знаменателями.


Наименьшее общее кратное знаменателей (8 и 6) равно 24.
Для нахождения разности дробей необходимо: привести дробные части к наименьшему общему знаменателю; затем выполнить вычитание числителей.
Найти разность дробей


Общее кратное знаменателей НОК(16, 20)=80. Для вычисления наименьшего общего кратного можно воспользоваться калькулятором. Калькулятор вычислит НОК автоматически.
Умножение и деление
Для умножения двух дробей нужно: перемножить их числители и знаменатели

Чтобы разделить дробь на другую нужно: умножить первую дробь на дробь, обратную второй:

Приведение к общему знаменателю
Чтобы совершать операции с дробями часто требуется привести дроби к общему знаменателю.
Рассмотрим процесс приведения двух дробей




Для сравнения дробей приведем их к общему знаменателю и сравним их числители. Воспользуемся шагами описанными выше и найдем наименьшее общее кратное знаменателей дробей и далее преобразуем:
НОК(18, 4)=36, дополнительный множитель первой дроби

,
доп. множитель второй дроби

Основное свойство дроби
Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.
Для того чтобы складывать и вычитать дроби с разными знаменателями, вам нужно привести их к общему знаменателю. Процессы сложения и вычитания дробей очень похожи; только на конечном этапе вы должны либо сложить, либо вычесть числители дробей. Если вы хотите научиться складывать и вычитать дроби с разными знаменателями, выполните следующие действия.
- Запишите дроби рядом друг с другом. Напишите их так, чтобы числители дробей (верхние числа) и знаменатели дробей (нижние числа) располагались напротив друг друга. Например, рассмотрим дроби 9/11 и 2/4.
- Уясните, что такое эквивалентные дроби. Если умножить числитель и знаменатель определенной дроби на некоторое число, то вы получите эквивалентную дробь, равную исходной дроби. Например, если вы умножите дробь 2/4 на 2, вы получите дробь 4/8, которая равна (эквивалентна) исходной дроби 2/4. Вы можете проверить это следующим образом:
Нарисуйте круг, разделите его на четыре равные части и закрасьте две из них (2/4).Нарисуйте еще один круг, разделите его на 8 равных частей и закрасьте четыре из них (4/8).Сравните закрашенные области обоих кругов; они соответствуют дробям 2/4 и 4/8. Размер закрашенных областей будет одинаковым. - Нарисуйте круг, разделите его на четыре равные части и закрасьте две из них (2/4).
- Нарисуйте еще один круг, разделите его на 8 равных частей и закрасьте четыре из них (4/8).
- Сравните закрашенные области обоих кругов; они соответствуют дробям 2/4 и 4/8. Размер закрашенных областей будет одинаковым.
- Перемножьте два знаменатели, чтобы найти общий знаменатель. Для того чтобы сложить или вычесть дроби, нужно привести их к общему знаменателю; общий знаменатель – это число, делителями которого являются знаменатели данных дробей. Простейший способ найти общий знаменатель дробей – это перемножить их знаменатели. Сделав это, переходите к следующему разделу или продолжайте читать этот раздел и узнаете, как найти наименьший общий знаменатель (НОЗ).
В нашем примере 11 и 4 – это знаменатели дробей 9 / и 2 /
Перемножьте эти знаменатели: 11 x 4 = . - В нашем примере 11 и 4 – это знаменатели дробей 9 / и 2 /
- Перемножьте эти знаменатели: 11 x 4 = .
- Найдите наименьший общий знаменатель (НОЗ). Это наименьшее число, которое делится на знаменатели данных дробей. Для вычисления НОЗ запишите кратные каждого знаменателя данных дробей. Подчеркните наименьшее число, которое встречается в обоих списках. На этот раз рассмотрим такой пример: 5/6 + 2/9.
В нашем примере знаменатели равны 6 и 9, поэтому для первого знаменателя пишите числа, делящиеся на 6, а для второго – на 9.Кратные 6: 6, 12, , 24Кратные 9: 9, , 27, 36Так как число – это наименьшее число, находящееся в обоих списках, то НОЗ = 18. - В нашем примере знаменатели равны 6 и 9, поэтому для первого знаменателя пишите числа, делящиеся на 6, а для второго – на 9.
- Кратные 6: 6, 12, , 24
- Кратные 9: 9, , 27, 36
- Так как число – это наименьшее число, находящееся в обоих списках, то НОЗ = 18.
Умение складывать дробей — это очень полезный навык, который пригодится не только в школе, но и в повседневной жизни. В этой статье мы расскажем вам, как складывать дроби.
- Посмотрите на знаменатели (числа под чертой) дробей. Если они одинаковые, вам даны дроби с одинаковыми (равными) знаменателями; в противном случае перейдите в следующий раздел.
- Рассмотрим два примера, на основе которых продемонстрируем, как складывать дроби с равными знаменателями.Пример 1: 1/4 + 2/4Пример 2: 3/8 + 2/8 + 4/8
- Пример 1: 1/4 + 2/4
- Пример 2: 3/8 + 2/8 + 4/8
- Сложите числители (числа над чертой). Если знаменатели дробей равны, просто сложите числители.
Пример 1: 1/4 + 2/4. Здесь числа «1» и «2» являются числителями, поэтому 1 + 2 = 3.Пример 2: 3/8 + 2/8 + 4/8. Здесь числа «3», «2» и «4» являются числителями, поэтому 3 + 2 + 4 = 9. - Пример 1: 1/4 + 2/4. Здесь числа «1» и «2» являются числителями, поэтому 1 + 2 = 3.
- Пример 2: 3/8 + 2/8 + 4/8. Здесь числа «3», «2» и «4» являются числителями, поэтому 3 + 2 + 4 = 9.
- Запишите конечную дробь. Найденную сумму числителей запишите в числителе новой дроби. Теперь запишите одинаковый знаменатель в знаменателе новой дроби, то есть исходный знаменатель не меняется.
Пример 1: 3 — это числитель, а 4 — знаменатель конечной дроби. Таким образом, 1/4 + 2/4 = 3/4.Пример 2: 9 — это числитель, а 8 — знаменатель конечной дроби. Таким образом, 3/8 + 2/8 + 4/8 = 9/8. - Пример 1: 3 — это числитель, а 4 — знаменатель конечной дроби. Таким образом, 1/4 + 2/4 = 3/4.
- Пример 2: 9 — это числитель, а 8 — знаменатель конечной дроби. Таким образом, 3/8 + 2/8 + 4/8 = 9/8.
- Упростите конечную дробь (если нужно).Если числитель больше знаменателя (как в Примере 2), преобразуйте такую неправильную дробь в смешанное число. Для этого разделите числитель на знаменатель. В нашем примере 9/8 = 1 и остаток 1. Теперь целочисленный результат деления запишите перед новой дробью, в ее числителе запишите остаток, а ее знаменателем будет знаменатель исходной дроби. Таким образом,9/8 = 1 1/8.
- Если числитель больше знаменателя (как в Примере 2), преобразуйте такую неправильную дробь в смешанное число. Для этого разделите числитель на знаменатель. В нашем примере 9/8 = 1 и остаток 1. Теперь целочисленный результат деления запишите перед новой дробью, в ее числителе запишите остаток, а ее знаменателем будет знаменатель исходной дроби. Таким образом,9/8 = 1 1/8.
На первый взгляд складывать дроби с разными знаменателями довольно сложно, но если привести их к общему знаменателю, все станет гораздо проще. Если вы работаете с неправильными дробями, у которых числители больше знаменателей, сделайте знаменатели одинаковыми, а затем сложите числители. Если нужно сложить смешанные числа, преобразуйте их в неправильные дроби, приведите их к общему знаменателю, а затем сложите числители.
- Например, сложите дроби 9/5 + 14/7. Кратными знаменателя 5 являются 5, 10, 15, 20, 25, 30, 35, а кратными знаменателя 7 — 7, 14, 21, 28, 35. Итак, 35 является наименьшим общим кратным.
- В нашем примере умножьте 9/5 на 7, чтобы получить знаменатель 35. Числитель также умножьте на 7; таким образом, вы получите дробь 63/35.
- В нашем примере умножьте 14/7 на 5, чтобы получить дробь 70/35. Таким образом, исходная задача 9/5 + 14/7 перепишется так: 63/35 + 70/35.
- В нашем примере: 63 + 70 = 133. Запишите этот результат над знаменателем, чтобы получить дробь 133/35.
- Например, дробь 133/35 можно превратить в смешанное число 3 28/35. Теперь дробь 28/35 сократите до 4/5. Таким образом, окончательный ответ равен 3 4/5.
- Например, сложите 6 3/8 + 9 1/24. Эти смешанные числа превратятся в дроби 51/8 + 217/24.
- Кратными 8 являются 8, 16, 24, 32, 48, а кратными 24 — 24, 48, 72. Итак, НОК равен 24.
- Например, чтобы дробь 51/8 привести к знаменателю 24, умножьте числитель и знаменатель на 3. Вы получите дробь 153/24.
- В нашем примере вторая дробь 217/24, то есть ее знаменатель уже равен НОК. Таким образом, эту дробь менять не нужно.
- В нашем примере: 153/24 + 217/24 = 370/24.
- В нашем примере 370/24 = 15 10/24, потому что 370/24 = 15 ост. 10. Дробь 10/24 можно сократить до 5/12. Таким образом, окончательный ответ равен 15 5/12.
Сложение смешанных чисел (смешанных дробей).
Правила сложения смешанных дробей:
- приводим дробные части этих чисел к наименьшему общему знаменателю (НОЗ);
- отдельно складываем целые части и отдельно дробные части, складываем результаты;
- если при сложении дробных частей получили неправильную дробь, выделяем целую часть из этой дроби и прибавляем ее к полученной целой части;
- сокращаем полученную дробь.

Сложение дробей с разными знаменателями.
Правила сложения дробей с разными знаменателями:
- приводим дроби к наименьшему общему знаменателю (НОЗ). Для этого находим наименьшее общее кратное (НОК) знаменателей;
- складываем числители дробей, а знаменатели оставляем не меняя;
- сокращаем дробь, которую получили;
- если получили неправильная дробь – преобразовываем неправильную дробь в смешанную дробь.
Примерыдробей с разными знаменателями:


Сложение десятичных дробей.
При сложении десятичных дробей процесс записывают «столбиком» (как обычное умножение столбиком), так чтобы одноимённые разряды находились друг под другом без смещения. Запятые обязательно выравниваем чётко друг под другом.
Калькулятор дробей онлайн. Сложение, вычитание, умножение, деление дробей.
Калькулятор десятичных дробей онлайн. Перевод десятичных дробей в обычные и обычных в десятичные.
Правила сложения десятичных дробей:
1. Если нужно, уравниваем количество знаков после запятой. Для этого добавляем нули к
2. Записываем дроби так, чтобы запятые находились друг под другом.
3. Складываем дроби, не обращая внимания на запятую.
4. Ставим запятую в сумме под запятыми, дробей, которые складываем.
Обратите внимание! Когда у заданных десятичных дробей разное количество знаков (цифр) после запятой, то к дроби, у которой меньше десятичных знаков приписываем нужное количество нулей, для уравнения в дробях число знаков после запятой.
Разберёмся на примере. Найти сумму десятичных дробей:
0,678 + 13,7 =
Уравниваем число знаков после запятой в десятичных дробях. Дописываем 2 нуля справа к десятичной 13,7
0,678 + 13,700 =

0,678 + 13,7 = 14,378
Если сложение десятичных дробей вы освоили достаточно хорошо, то недостающие нули можно дописывать
Об этой статье
- Перед тем как сложить числители дробей, убедитесь, что их знаменатели одинаковы.
- Не складывайте знаменатели. Найдите общий знаменатель и не меняйте его.
- Если нужно сложить правильную или неправильную дробь со смешанным числом, сначала преобразуйте смешанное число в неправильную дробь, а затем используйте действия, описанные в этой статье.
Сложение дробей с одинаковыми знаменателями.
Чтоб сложить 2 дроби с одинаковыми знаменателями, необходимо сложить их числители, а знаменатели оставить без изменений. Сложение дробейпримеры
Общая формула для сложения обыкновенных дробей и вычитания дробей с одинаковыми знаменателями:
Обратите внимание! Проверьте нельзя ли сократить дробь, которую вы получили, записывая ответ.
Примеры задач
- 1 / 2 + 3 / 8 =
- 2 / 5 + 1 / 3 = 11 / 15
- 3 / 4 + 4 / 8 =
- 10 / 3 + 3 / 9 =
- 5 / 6 + 8 / 5 =
- 2 / 17 + 4 / 5 = 78 / 85
- 2 / 3 – 5 / 9 =
- 15 / 20 – 3 / 5 = 3 / 20
- 7 / 8 – 7 / 9 = 7 / 72
- 3 / 5 – 4 / 7 = 1 / 35
- 7 / 12 – 3 / 8 = 5 / 24
- 16 / 5 – 1 / 4 =
