Примеры решения задач по теме «Силы упругости. Закон Гука»

Книга, лежащая на полке, не падает вниз, хоть и оказывает на нее давление с определенной силой. Ей противостоит сила упругости материала, из которого сделана полка. Она имеет такое же значение, но противоположно направлена.

Содержание
  1. Силы упругости — что это за физическая величина
  2. Определение, общая характеристика, в чем измеряется
  3. Потенциальная энергия деформированного тела
  4. От чего зависит сила упругости, основные свойства
  5. График зависимости
  6. Примеры силы упругости в физике, решение задач
  7. Ход урока
  8. Поверка домашнего задания – 5 минут.
  9. III. Изучение нового теоретического материала – 10 минут.
  10. Физкультурная минутка – 2 минуты.
  11. Закрепление – 7 минут.
  12. VII. Домашнее задание – 1 минута.
  13. Измерение силы
  14. Деформация тел
  15. Что такое деформация
  16. Как рассчитать силу упругости
  17. В чем суть закона Гука
  18. В чем природа сил упругости
  19. Что такое сила упругости
  20. Работа силы упругости
  21. Силы электромагнитной природы
  22. Закон Гука
  23. Диаграмма растяжения
  24. Силы упругости и упругие деформации
  25. Сила упругости и вес тела
  26. Когда возникает сила упругости
  27. Какова природа силы упругости
  28. Некоторые виды сил упругости
  29. При каких условиях вес тела изменяется
  30. Как испытать состояние невесомости
  31. Алгоритм решения задач на движение тела под действием нескольких сил

Силы упругости — что это за физическая величина

Процессы, в которых отмечается действие силы упругости, происходят повсюду. На разбивающуюся в результате падения стеклянную бутылку действует сила упругости пола. Если же пол покрыт мягким покрытием, бутылка не бьется, поскольку сила упругости, направленная строго вверх, немного гасится воздушной прослойкой.

Проявление силы упругости можно видеть и при растяжении (сжатии) пружины, сгибании (разгибании) плоских предметов, кручении, разрывании и т.п. Иными словами, в процессах, ведущих к деформации тел в результате силового воздействия, присутствует сила упругости. Если она действует продолжительно, может наступить разрыв материалов либо полная потеря формы тела.

Характер деформации определяется характеристиками приложенных сил. Некоторые имеют максимальные проявления при горизонтальном направлении силы, другие — при вертикальном. Часто в физике имеют дело с силами, действующими по касательной.

Исходя из этого, деформации подразделяют на:

  • растяжения;
  • сжатия;
  • сдвиг;
  • кручение;
  • изгиб.

Интенсивность деформации зависит от свойств вещества. Так, если о пол ударится пластилиновый мячик, он потеряет круглую форму, но не разобьется, потому что пластилин мягок и пластичен. С железным же мячиком ничего не произойдет, поскольку это максимально упругий материал.

Предметы, изготовленные из упругого вещества, стремятся после воздействия внешней силы, вернуть свою первоначальную форму. Неупругие — теряют ее полностью, без возможности восстановления. Пример: в результате сильного ветра дерево ломается и падает.

Расчет изменения длины пружины при воздействии на нее внешней силы, с учетом ее упругости, производят по закону Гука.

Определение, общая характеристика, в чем измеряется

От того, насколько интенсивная деформация происходит, зависит величина силы упругости. Например, подвешенный к пружине груз вызывает ее деформацию начального этапа. Подвесив дополнительный груз, мы увеличим деформацию на конкретную величину. Следовательно, значение силы упругости зависит от модуля и направления приложенной внешней силы, вызывающей деформацию. Это соотношение заключено в формуле, которую открыл английский ученый Роберт Гук.

Согласно данному закону, малые деформации вызывают прямую пропорциональную зависимость удлинения тела от силы упругости.

Закон Гука можно применять в тех случаях, когда деформация  характеризуется упругостью.

Потенциальная энергия деформированного тела

Аналогично тому, что система взаимодействующих тел характеризуется потенциальной энергией, одно тело также ею обладает. Только в этом случае она определяется взаимным положением составляющих его частей.

Когда работа совершается благодаря силе тяжести, действующей на подвешенный к пружине подвес, энергия деформированного тела увеличивается. Причина этому — переход вещества из ненапряженного состояния в напряженное. Его потенциальная энергия растет, поскольку меняется взаимное расположение частиц.

При упругой деформации прекращение действия силы ведет к совершению работы за счет высвобождаемой энергии.

Следует помнить, что деформация упругих тел не сопровождается ростом температуры, как это происходит при сжатии газов. Если вещества обладает пластичностью, тело может значительно нагреваться, поскольку повышение температуры ведет в этом случае к увеличению кинетической энергии частиц. Внутренняя энергия такого тела растет по причине работы, которую совершает сила, провоцирующая деформацию.

Рассматривая потенциальную энергию упруго деформированного тела, измерения производят согласно формуле:

Примеры решения задач по теме «Силы упругости. Закон Гука»

В формуле используется коэффициент — модуль Юнга (Е), объем стержня (V) и коэффициент относительного удлинения (ε).

От чего зависит сила упругости, основные свойства

Как видно из рисунка, на груз, подвешенный на пружине, действует две силы:

  • сила тяжести груза, направленная перпендикулярно вниз и зависящая от его массы;
  • сила упругости (сопротивления) пружины, направленная перпендикулярно вверх.

Поскольку тело находится в покое, эти две силы имеют равное значение и уравновешивают друг друга. При этом пружина растягивается на определенную величину, вызывая изменения в собственной структуре. Обозначения графика  показывают, что это величина — Δx.

Измерение силы упругости сталкивается еще с одной величиной — жесткостью пружины, определить которую можно по специальным таблицам, зная, из какого материала она сделана.

График зависимости

Деформация тела ведет к изменениям в расположении его структурных единиц. При увеличении расстояния между ними усиливаются межмолекулярные силы притяжения. Силы отталкивания, напротив, уменьшаются. В другом случае, при сжатии предмета, межмолекулярные расстояния уменьшаются, следовательно, растут силы отталкивания, стремясь вернуть телу первоначальную форму. Описанные процессы описывают действие сил упругости.

Теоретически ее можно высчитать с помощью закона Гука, практически — измерить с помощью специальных приборов  (динамометров). В их основе лежит пружина, жесткость которой заранее известна.

Сила упругости зависит от величины, на которую увеличивается длина пружины. Графически эти процессы для пружин различного происхождения изображены на рисунке:

Примеры силы упругости в физике, решение задач

Сила упругости — физическое явление, лежащее в основе функционирования многих механизмов, машин, естественных и искусственно создаваемых процессов. Заглянем, например, в технологию работы подвески автомобиля. Ее предназначение — смягчить удар при попадании колеса на неровность. Упругий элемент подвески, преобразует энергию удара, придавая движению плавность и обеспечивая упругий контакт рамы с мостами, колесами. Плюс — устойчивость корпуса и проходимость автомобиля.

В мастерских используются такие инструменты, как молоток, ключ для закручивания гаек, клещи, зубило и т.п. Все они изготовлены из материалов, которые при работе испытывают различные виды деформации. При этом длительность использования гарантируется способностью восстанавливаться.

В природе удельный вес абсолютно упругих материалов ничтожно мал. Любой инструмент или оборудование со временем отражает последствия деформаций: тупится, расплющивается, искривляется и т.д. Это касается и таких конструкций, как станки, содержащие фрезу, сверлильные аппараты, резцы и т.п. Однако происходит это через длительный период использования.

Следующий вид проявления силы упругости — мост через реку (для обеспечения движения автомобильного либо железнодорожного транспорта). При движении большегрузного транспорта деформации моста должны исчезать. Их сохранение неминуемо привело бы к изменению формы, вплоть до полного разрушения. Поэтому содержание работ при строительстве моста включает подбор таких элементов, которые рассчитаны на упругие деформации. То же касается железнодорожного полотна.

  • ввести понятие силы упругости;
  • опытным путём получить закон Гука;
  • ввести формулу закона Гука.
  • систематизировать и обобщить знания учащихся о понятии “сила”, “сила
    тяжести”;
  • развивать внимание и любознательность путём выполнения опытов при
    объяснении нового материала;
  • формировать умения объяснять окружающие явления, происходящие в природе.
  • вырабатывать устойчивое внимание при объяснении нового теоретического
    материала;
  • развивать правильную речь, используя физические термины;
  • достичь высокой активности и организации класса.
  • медиапроектор;
  • белый экран;
  • штативы;
  • набор гирь;
  • пружины разной жёсткости;
  • динамометры.

Ход урока

Вопрос к учащимся. Какую новую тему мы с вами начали изучать на прошлом уроке
и что вы учили дома к этому уроку?

Ответ. Сила. Сила тяжести. § 23, 24.

Поверка домашнего задания – 5 минут.

(Через медиапроектор, в форме презентации-теста.)

На экране через проектор в форме презентации представлены вопросы теста для
проверки домашнего задания.

1. Что такое сила?

а) любое изменение формы тела;
б) мера взаимодействия тел;
в) точного понятия нет.

2. Какой буквой обозначают силу?

а) S;
б) m;
в) F.

3. Какую силу называют силой тяжести?

а) сила, с которой Земля притягивает к себе тела;
б) притяжение всех тел Вселенной друг к другу;
в) физическая величина, характеризующая инертность тела.

4. Как направлена сила тяжести?

а) вертикально вниз;
б) вертикально вверх;
в) вправо.

5. От чего зависит результат действия силы на тело?

а) массы;
б) модуля, направления, точки приложения;
в) объёма, плотности, расстояния.

Меняются слайды с вопросами, учащиеся сами читают вопросы и варианты ответов,
и записывают на своих листках только букву правильного, по их мнению, ответа: а,
б, в, одну из трёх предложенных.

По окончании работы, листки передаются учителю для дальнейшей проверки и
выставления оценок за работу в журнал (дневник).

– Хорошо! Это мы повторили, вспомнили о чём начали говорить на прошлом уроке.

– А теперь новый у меня к вам вопрос:

III. Изучение нового теоретического материала – 10 минут.

1. Постановка проблемного вопроса.

Книга, лежащая на столе, может сама по себе упасть? (Нет, она находится в
состоянии покоя.) Шар висит на нити, брусок лежит на столе, снег лежит на крыше.
Падают ли тела? (Нет.) Почему покоятся тела, лежащие на опоре или подвешенные на
нити? (Учащиеся высказывают свои предположения.)

Итак, предположим, что сила тяжести уравновешивается какой-то другой силой.
Что же это за сила и как она возникает?

2. Объяснение причины покоя тел, лежащих на опоре или подвешенных на нити.

Проведём опыт. На середину горизонтально расположенной доски поставим гирю.

Под действием силы тяжести гиря начнёт двигаться вниз и прогнёт доску, т.е.
доска деформируется. При этом возникает сила, с которой опора (доска) действует
на тело расположенное на ней.

Какой вывод можно сделать из этого опыта?

Вывод. На гирю, кроме силы тяжести, направленной вертикально вниз, действует
другая сила. Эта сила направлена вертикально вверх. Она и уравновесила силу
тяжести.

3. Тема урока: “Сила упругости. Закон Гука”.

– Открываем свои рабочие тетради, записываем на полях число и тему урока по
центру “Сила упругости. Закон Гука”.

– Дадим определение силы упругости и запишем его в тетрадь.

Сила упругости – сила, возникающая в теле в результате его деформации и
стремящаяся вернуть тело в исходное положение.

4. Объяснение причины возникновения силы упругости деформацией тела (опоры).

Направление силы упругости противоположно направлению силы тяжести. Когда мы
наблюдаем равенство силы тяжести и силы упругости? (При остановке тела и опоры.)

возникает при
деформации тел.

– Дайте определение деформации тела. (Ответ учащихся: деформация –
любое изменение формы и размера тела.)

– А теперь внимание на магнитную доску.

(Демонстрируется плакат видов деформаций, а также с помощью прибора для
демонстрации видов деформаций показать 5 видов деформаций, привести примеры.)

5. Виды деформаций:

  • Растяжение (тросы, цепи).
  • Сжатие (колонны, стены).
  • Сдвиг (болты, заклёпки).
  • Кручение (гайки, валы, оси).
  • Изгиб (мосты, балки).

Точка приложения силы упругости
(на доске изображение вектора силы упругости).

Физкультурная минутка – 2 минуты.

Учащимся предлагается встать со своих мест, и, закрепляя виды деформаций,
показать с помощью своего тела все 5 видов деформаций: растяжение, сжатие,
сдвиг, кручение, изгиб.

6. Объяснение закона Гука.

а) Практическое задание – 10 мин.

На штативе закреплена пружина, отмечены: нулевой уровень (точка отсчёта) и
конечного положения пружины в состоянии покоя.

  • Измерить длину пружины в первоначальном положении.
  • Подвесить к пружине 5 грузиков, масса каждого по 100 г.
  • Прикрепить стрелку в конечном положении пружины.
  • Измерить длину пружины в конечном состоянии пружины.
  • Найти разность длин пружины.

Lо – начальная длина пружины;
L – конечная длина пружины;

L = L – Lо –
изменение длин пружины.

Вывод. Модуль силы упругости при растяжении (или сжатии) тела прямо
пропорционален изменению длины тела.

В этом и заключается Закон Гука. Был открыт английским
учёным Робертом Гуком в 1660 г. (доклад уч-ся: биография
Р.Гука).

(Показ видео ролика на тему: “Сила упругости. Закон Гука”.)

L –
удлинение тела (изменение его длины);
k – коэффициент пропорциональности (жёсткость).

Жёсткость тела зависит от формы и размеров, материала, из которого оно
изготовлено.

Закон Гука справедлив только для упругой деформации, т.е. если после
прекращения действия сил, деформирующих тело, оно возвращается в исходное
положение.

Закрепление – 7 минут.

1) Беседа по вопросам:

  • Когда возникает сила упругости?
  • Что называют деформацией тела?
  • Какие виды деформаций вы знаете?
  • Как формулируется закон Гука?
  • Как записывается закон Гука?

2) Решение задач.

VII. Домашнее задание – 1 минута.

– Наш урок подходит к концу, поэтому открываем свои дневники, открываем и
записываем домашнее задание на следующий урок.

Домашнее задание: § 25.

Мы уже знаем, что на все тела, которые находятся на Земле или вблизи неё, действует сила тяжести. Эта сила является причиной того, что тела, лишённые опор или подвесов, например капли дождя, брошенный вверх камень, листва, оторвавшаяся от ветви дерева, падают на Землю.

Опыт 1. Положим на две опоры стальную пластину. Она будет находиться в горизонтальном положении (рис. 72, а). Когда на середину ее поставим гирю, то под действием силы тяжести гиря вместе со стальной пластиной будет двигаться вниз до тех пор, пока не остановится (рис. 72, б).

Примеры решения задач по теме «Силы упругости. Закон Гука»

Прекращение движения можно объяснить тем, что кроме силы тяжести, действующей на гирю и направленной вертикально вниз, на неё начала действовать сила, направленная вверх, которая уравновесила силу тяжести. Откуда возникла эта вторая сила ?

Изменение формы или размеров тела называют деформацией. Вследствие движения тела вниз стальная пластина прогибается — деформируется. В результате деформации в пластине возникает сила, с которой она действует на гирю, стоящую на ней. Эту силу назвали силой упругости, она направлена вверх, т. е. в сторону, противоположную силе тяжести. Когда сила упругости по значению сравняется с силой тяжести, опора и тело остановятся.

Сила упругости – это сила, возникающая вследствие деформации тела, и направленная противоположно направлению перемещения частиц тела при деформации.

Одним из видов деформации является прогиб. Чем больше прогибается опора, тем большей становится сила упругости, действующая со стороны опоры на тело. До того как тело поставили на пластину, деформация в ней отсутствовала, как и сила упругости. По мере перемещения гири прогиб пластины возрастал и увеличивалась сила упругости. Свойства упругих тел (пружин) всесторонне изучил более 300 лет назад английский естествоиспытатель Роберт Гук. Проделанные им опыты позволили установить закон, названный его именем — закон Гука, а именно:

Сила упругости прямо пропорциональна деформации (удлинению) тела (пружины) и направлена противоположно направлению перемещения частиц тела при деформации.
Если удлинение тела, т. е. изменение его длины, обозначить через х (рис. 73, б), а силу упругости — через

Примеры решения задач по теме «Силы упругости. Закон Гука»

, то закона Гука можно предоставить в таком математическом виде:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Чем больше жёсткость тела (пружины, провода, стержня и т. п.), тем меньше оно изменяет собственную длину под действием данной силы. Единицей жёсткости в СИ является один ньютон на метр

Примеры решения задач по теме «Силы упругости. Закон Гука»

Опыт 2. Установим тело на опору (рис. 73, а). Вследствие взаимодействия деформируется не только опора, но и само тело, которое притягивается Землёй. Деформированное тело давит на опору с силой, которую называют весом тела Р. Если тело подвесить к пружине, то оно деформируется и при этом растягивает пружину, в результате чего возникает сила упругости (рис. 73, б).

Примеры решения задач по теме «Силы упругости. Закон Гука»

Тело действует на подвес с силой, которую называют весом тела Р.

Вес тела – это сила, с которой тело вследствие притяжения к Земле действует на горизонтальную опору или подвес.

Не следует путать силу тяжести с весом тела. Сила тяжести действует на само тело со стороны Земли, а вес этого тела — это сила упругости, которая действует на опору или подвес.

Если горизонтальная опора или подвес с телом находится в состоянии покоя или движется прямолинейно и равномерно, то вес тела равен силе тяжести и определяется по формуле:

Примеры решения задач по теме «Силы упругости. Закон Гука»

где Р— вес тела;

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

— масса тела.

Иногда путают вес тела с его массой — это ошибка. Во-первых, это разные физические величины, из которых вес — направленная величина, вектор, а масса определяется только числовым значением. Они характеризуют разные свойства тел и имеют разные единицы: для веса — ньютон, для массы – килограмм. Во-вторых, каждое тело всегда имеет определённую неизменную массу, а вес тела может изменяться, если опора или подвес движется неравномерно. В этом случае вес тела может увеличиваться или уменьшаться по сравнению с весом тела на неподвижной опоре и даже исчезать, т. е. равняться нулю (состояние невесомости). Например, поднимая грузы с помощью подъёмного крана, нужно учитывать, что во время резких рывков вес груза возрастает, и трос может разорваться. Стоя на платформе медицинских весов, мы замечаем, что их показания изменяются, если мы приседаем или двигаем руками.

Вес тела действует на любую опору: пол, по которому мы ходим, стул, на котором сидим, канат, за который ухватились. Назначение опоры – ограничивать движение тела под действием силы тяжести, отсюда и её название.

Начиная с 4 октября 1957 г., когда космическая ракета вывела на орбиту первый искусственный спутник Земли, началась эра освоения человеком космического пространства. Человек побывал на Луне, готовится экспедиция на Марс. Мы часто слышим по радио и телевидению, читаем в газетах и журналах, что космонавты во время полёта в космическом корабле по орбите вокруг Земли находятся в особом состоянии, называемом невесомостью.

Что это за состояние и можно ли его наблюдать на Зеше?

Опыт 3. Верхний конец пружины с помощью нити прикрепим к неподвижной опоре, а к нижнему подвесим грузик (рис. 74, а). Под действием силы тяжести он начинает двигаться вниз. Пружина будет растягиваться до тех пор, пока возникшая в ней сила упругости не уравновесит силу тяжести. Перережем или пережжём нить, которая удерживает тело с пружиной. Пружина и тело начинают свободно падать, при этом растяжение у пружины исчезает, а это и означает, что тело потеряло вес и не действует на подвес (рис. 74, б).

Примеры решения задач по теме «Силы упругости. Закон Гука»

Сила тяжести при этом никуда не исчезает и заставляет тело падать на Землю.

Так же если скорости падения тела и опоры (подвеса) одинаковы, то тело не действует на них, и его вес равен нулю. Если искусственный спутник или космическая станция обращается вокруг Земли, то космонавты и все предметы внутри них двигаются с одинаковой скоростью относительно Земли. Вследствие этого тела, размещённые на подставках, не действуют на них, подвешенные к пружинам тела не растягивают их, разлитая из сосуда вода плавает в виде большой капли, маятниковые часы перестают работать, космонавты без особых усилий передвигаются, «летая» или «плавая» в корабле.

Если бы сила тяжести внезапно исчезла, то космический корабль вследствие инерции удалялся бы от Земли в космическое пространство по прямой линии. В состоянии невесомости находится любое тело во время свободного, т. е. безопорного падения. Если при обычных условиях не учитывать сопротивление воздуха, то в невесомости находится спортсмен, прыгающий с вышки в бассейн или выполняющий упражнения на батуте; любой из нас кратковременно находится в состоянии невесомости во время бега, когда обе ноги отрываются от Земли.

В давние времена благодаря упругим свойствам некоторых материалов (в частности, такого дерева, как тисс) наши пращуры изобрели лук – ручное оружие, предназначенное для метания стрел с помощью силы упругости натянутой тетивы.

Изобретённый приблизительно 12 тыс. лет тому назад, лук на протяжении многих столетий был основным оружием почти всех племён и народов мира. До изобретения огнестрельного оружия лук был наиболее эффективным боевым средством. Английские лучники могли выпускать до 14 стрел в минуту, что при массовом использовании луков в бою образовывало целую тучу стрел. Например, количество стрел, выпущенных в битве при Азенкуре (во время Столетней войны), составляло приблизительно 6 миллионов!

Широкое применение этого грозного оружия в средние века вызвало обоснований протест со стороны определённых слоёв общества. В 1139 г. Латеранский (церковный) собор, собравшийся в Риме, запретил применение этого оружия против христиан. Однако борьба за «лучное разоружение» не имела успеха, и лук как боевое оружие люди продолжали использовать ещё на протяжении 500 лет.

Назовите силы, которые действуют на груз, подвешенный к концу спиральной пружины.

Ответ: на груз действуют сила тяжести, направленная вертикально вниз, и сила упругости, направленная противоположно удлинению пружины.

Каков вес космического аппарата массой 383 кг на поверхности планеты Марс? На Марсе

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

= 383 кг

Чтобы определить вес космического аппарата, используем формулу:

Ответ: Р= 1493,7 Н.

Космонавту в условиях невесомости необходимо заниматься физическими упражнениями. Понадобятся ли ему гантели?

Ответ: обычные упражнения на подъём веса в состоянии невесомости теряют смысл, но упражнения на преодоление инертности гантелей (махи, повороты, разведения рук и т. п.) выполнять вполне возможно. Тем не менее гантели как лишний груз скорее заменят на эспандер.

Измерение силы

Устройство динамометра (от греческих слов динамис — сила; метрео — измеряю) основано на том, что сила упругости пружины по закону Гука прямо пропорциональная удлинению (деформации) пружины.

Простейший пружинный динамометр изготовляют так. На дощечке закрепляют пружину, которая заканчивается внизу стержнем с крючком (рис. 79, а). К верхней части стержня прикрепляют указатель. На дощечке отмечают положение указателя — это нулевой штрих. Потом к крючку подвешивают разновесы массой 102 г. На этот грузик действует сила тяжести 1 Н. Под действием силы 1 Н пружина растянется, указатель опустится вниз. Отмечают его новое положение и напротив метки ставят цифру 1 (рис. 79, б). Потом подвешивают разновесы массой 204 г и ставят метку 2, которая означает, что в этом положении сила упругости пружины равна 2 Н (рис. 79, в). С помощью разновесов массой 306 г наносят метку 3

(рис. 79, г) и т. д.

Примеры решения задач по теме «Силы упругости. Закон Гука»

Можно нанести деления, соответствующие десятым долям ньютона: 0,2; 0,4; 0,6 и т. д. Для этого промежутки между соседними штрихами нужно поделить на пять одинаковых частей.

Проградуировать прибор – это значит нанести на него шкалу с делениями.

Проградуированная таким образом пружина и будет простейшим динамометром. Для измерения силы используют такие динамометры (рис. 80): а — школьный лабораторный динамометр; б — школьный демонстрационный динамометр: в – пружинные весы: г — медицинский динамометр-силомер, предназначенный для измерения силы мышц руки человека; д — динамометр-тягомер. Основной частью такого динамометра являются упругие стальные рессоры. Этот прибор используют для измерения силы тяги автомобилей, тракторов и т. п.

Деформация тел

Одним из признаков твердых тел является их свойство сохранять свою форму длительное время. Однако такое свойство наблюдается только тогда, когда на тело не действуют другие тела. Взаимодействуя с другими телами, оно изменяет свою форму. Это изменение не всегда заметно, однако оно всегда существует.

Что такое деформация

Изменение форм или размеров тела называют деформацией.

Явление деформации подчиняется действию определенных законов. Один из таких законов можно проиллюстрировать опытом. Повесим на штативе резиновую нить и измерим ее длину. Подвесим к нити груз определенной массы и увидим, что он начнет опускаться вниз, растягивая нить. Скорость его будет уменьшаться, и он в конце концов остановится, а длина нити будет больше начальной. По результатам опыта можно сделать вывод, что при деформации нити возникла сила, направленная в сторону, противоположную деформации.

Эту силу назвали силой упругости.

Силу, возникающую при деформации называют силой упругости.

Как рассчитать силу упругости

Силу упругости можно рассчитать, если известна деформация тела. Если начальную длину нити обозначить буквой

Примеры решения задач по теме «Силы упругости. Закон Гука»

а длину после растяжения –

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

В предыдущем опыте добавим еще одну гирьку. Нить растянется больше. Если измерим изменение длины нити для этого случая, то увидим, что она стала в два раза большей, чем до этого. Такая закономерность характерна для всех случаев незначительной деформации тел и отображает действие закона Гука.

В чем суть закона Гука

Математически эта зависимость записывается так:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

– сила упругости;

Примеры решения задач по теме «Силы упругости. Закон Гука»

– деформация тела;

Примеры решения задач по теме «Силы упругости. Закон Гука»

– коэффициент упругости.

Сила упругости пропорциональна деформации тела и направлена всегда в противоположном деформации направлении.

Примеры решения задач по теме «Силы упругости. Закон Гука»

Закон Гука можно проиллюстрировать с помощью графика (рис. 46). На нем зависимость силы упругости от деформации изображена прямой линией, поскольку сила пропорциональна деформации. На рисунке показана зависимость силы упругости от деформации для двух различных тел. Графики являются прямыми линиями, но имеют различный наклон, что свидетельствует о различном значении коэффициента упругости для различных тел.

Закон Гука выполняется для таких деформаций, после снятия которых тело приобретает предыдущие размеры и форму. Такие деформации называют упругими.

В чем природа сил упругости

Возникновение силы упругости связано с силами взаимодействия между молекулами. При деформации изменяется расстояние между молекулами, а поэтому преобладают или силы притяжения (при растяжении тела), или силы отталкивания (при сжатии тела).

Силы упругости учитывают и используют в различных приспособлениях и машинах. Автомобили, железнодорожные вагоны и другие транспортные средства имеют рессоры. Их использование делает движение более мягким, так как наезд колеса на камень или другое препятствие вызывает только деформацию рессоры и ощутимо не изменяет положения самого транспортного средства.

В странах, где часто бывают землетрясения, дома ставят на специальные пружины, которые во время толчка деформируются, а здание остается практически неподвижным.

Что такое сила упругости

Как известно, взаимодействие тел является не только причиной изменения их скоростей, но и деформации. Сила, вызывающая это явление, называется силой упругости.

Английский естествоиспытатель, ученый и экспериментатор Роберт Гук установил закон, названный его именем. Исследуя упругие деформации различных тел, Гук установил, что при деформации упругих тел их растяжение или сжатие прямо пропорционально силе, которая их растягивает или сжимает (рис. 2.16):

Примеры решения задач по теме «Силы упругости. Закон Гука»

Во время решения задач по расчету силы упругости необходимо четко представлять ее направление и к какому именно телу она приложена. Следует помнить, что деформация тела под действием любой внешней силы вызывает силу упругости, которую определяют по закону Гука.

Примеры решения задач по теме «Силы упругости. Закон Гука»

Если в поле силы тяготения к пружине подвесить тело (рис. 2.18), то под действием этой силы оно будет опускаться.

В пружине возникнет сила упругости, которая будет постепенно возрастать.

Когда сила упругости сравняется с силой тяготения (

Примеры решения задач по теме «Силы упругости. Закон Гука»

= mg), тело будет находиться в состоянии покоя. Обе рассмотренные силы приложены к одному телу и направлены в противоположных направлениях. В состоянии равновесия тела их равнодействующая равна нулю.

Силу упругости, действующую на тело со стороны подвеса или опоры, называют силой реакции опоры.

Природа сил упругости — электромагнитная. Она обусловлена взаимодействием молекул и атомов, из которых и состоят тела (положительно заряженные протоны, которые входят в состав ядер атомов, и электроны, движущиеся вокруг ядер).

Силы взаимодействия между молекулами и атомами имеют такую особенность: при увеличении расстояния между ними они являются силами притяжения, а при уменьшении — силами отталкивания. Этим и объясняется возникновение сил упругости и направление их действия.

Сила упругости направлена перпендикулярно (нормально) к поверхности столкновения тел, а в случае с деформированными телами (стержнями, пружинами, нитками, тросами и т. п.) – вдоль их осей.

К проволоке подвесили груз массой 10 кг (рис. 2.19). Длина проволоки увеличилась на 0,5 мм. Какова ее жесткость, если ускорение силы тяжести 10

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

m = 10 кг,

х = 0,5мм,

Груз, подвешенный на пружине, -находится в состоянии покоя. Сила упругости

Примеры решения задач по теме «Силы упругости. Закон Гука»

по модулю равна силе тяжести

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Таким образом, mg = kx, отсюда

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Работа силы упругости

Как известно, сила упругости — это сила, возникающая при деформации тела внешними воздействиями. Наиболее удобно изучать действие этой силы на примере пружин или резинового шнура, поскольку достаточно малые внешние силы вызывают значительное изменение их длины, которое легко можно измерить.

Рассмотрим систему, состоящую из пружины и тела некоторой массы, лежащего на достаточно гладкой горизонтальной поверхности (рис. 137, а). Правый конец пружины прикреплен к стене, а левый — к телу. Направим ось Ох, как показано на рисунке 137. Если тело сместить на расстояние х1 от положения равновесия, то пружина будет действовать на него с силой упругости (рис. 137, б), направленной влево. Модуль проекции этой силы на ось Ox равен kx1, где k — жесткость пружины.

Теперь отпустим тело. Тогда под действием силы упругости пружины тело будет смещаться влево. При этом движении сила упругости совершает работу.

Предположим, что тело переместилось из положения А в положение В (рис. 137, в) так, что расстояние от положения равновесия стало х2. Модуль перемещения тела равен x1-x2. Направления действия силы и перемещения тела совпадают.

Для нахождения работы, совершенной пружиной по перемещению тела, необходимо учесть, что сила упругости меняется, так как ее величина зависит от удлинения пружины. Воспользуемся графиком зависимости модуля силы от удлинения пружины (рис. 138). Как нам уже известно, работа силы численно равна площади под графиком силы. В нашем случае площади трапеции. Нетрудно сообразить, что

Примеры решения задач по теме «Силы упругости. Закон Гука»

Из полученной формулы следует, что работа силы упругости пружины зависит только от координат x1 и х2 начального и конечного положений. Из рисунка 137 видно, что x1 и х2 — это и удлинение пружины, и координаты ее конца в выбранной системе координат. Следовательно, работа силы упругости не зависит от формы траектории. А если траектория замкнута, то работа равна нулю. Итак, сила упругости является потенциальной силой. Удлинение пружины или резинового шнура часто обозначают через Δl, поэтому

Примеры решения задач по теме «Силы упругости. Закон Гука»

где ∆l1 и Δl2 — удлинения пружины в начальном и конечном положениях.
Формулу (1) для работы силы упругости можно записать и в таком виде:

В правой части полученного равенства стоит изменение величины

Примеры решения задач по теме «Силы упругости. Закон Гука»

со знаком «минус». Поэтому, как и в случае силы тяжести, величина

Примеры решения задач по теме «Силы упругости. Закон Гука»

представляет собой потенциальную энергию упруго деформированного тела:

Таким образом, работа силы упругости равна изменению потенциальной энергии упруго деформированного тела (пружины), взятому с противоположным знаком.

Если в конечном состоянии удлинение пружины равно нулю, то формула (5) с учетом (1) принимает вид:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Отсюда следует, что потенциальная энергия упруго деформированной пружины равна работе сил упругости при переходе тела (пружины) в состояние, в котором его деформация равна нулю. Например, растянутая пружина закрывает дверь подъезда (рис. 139).

О потенциальной энергии тела, на которое действует сила тяжести, мы говорили, что это энергия взаимодействия тела с Землей. Потенциальная энергия упруго деформированного тела — это тоже энергия взаимодействия. Однако в этом случае речь идет о взаимодействии частиц, из которых состоит тело.

  • Работа силы упругости не зависит от формы траектории тела, а определяется положением тела в начальном и конечном состояниях.
  • Сила упругости является потенциальной силой.
  • Потенциальная энергия упруго деформированного тела равна работе сил упругости при переходе в недеформированное состояние.

Силы электромагнитной природы

Известно, что наэлектризованные электрическим зарядом тела притягиваются или отталкиваются силами электрического характера. Если же электрические заряды в телах будут двигаться друг относительно друга, то дополнительно к электрическим силам между телами возникают магнитные силы. Эти силы, прочно связанные между собой, невозможно отделить друг от друга, потому что они действуют одновременно. Поэтому говорят, что взаимодействие между наэлектризованными телами происходит в результате действия сил электромагнитной природы. Силы упругости и трения, являющиеся причиной изменения скорости механического движения тела, также являются силами электромагнитной природы.

Сила упругости – это сила электромагнитной природы.

Как вы знаете, любое твердое тело под действием внешней силы испытывает деформацию.

Деформацией называется изменение формы и размеров тела под действием внешней силы. В результате деформации происходит смещение атомов и молекул относительно друг друга: расстояние между атомами или увеличивается, или уменьшается. Такое смещение вызывает соответствующее увеличение или уменьшение действия сил электростатического взаимодействия зарядов внутри атомов (положительных ядер и отрицательных электронов). В результате, в деформированной части тела возникает сила электромагнитной природы, “старающаяся” вернуть тело в первоначальное состояние — силой упругости.

Сила упругости – это сила, возникающая при деформациях твердого тела и действующая в направлении восстановления тела в первоначальном состоянии.

Если после прекращения действия на тело внешней силы оно под действием силы упругости полностью восстанавливает свою форму и размеры, то такая деформация называется упругой деформацией, если же это не происходит, пластической деформацией.

Различают следующие виды деформации: растяжение-сжатие, изгиб, кручение и сдвиг. При деформации растяжение-сжатие изменяется расстояние между частями тела, а при деформации сдвига части тела сдвигаются параллельно друг другу. Деформация изгиб состоит из комбинации деформации сжатия и растяжения частей твердого тела, а деформация кручения из комбинации деформации сдвига (b).

Примеры решения задач по теме «Силы упругости. Закон Гука»

Закон Гука

Деформация растяжение-сжатие твердого тела характеризуется величинами, называемыми абсолютным удлинением и относительным удлинением.

Примеры решения задач по теме «Силы упругости. Закон Гука»

– начальная, а

Примеры решения задач по теме «Силы упругости. Закон Гука»

— конечная длина твердого тела,

Примеры решения задач по теме «Силы упругости. Закон Гука»

– его абсолютное удлинение, а

Примеры решения задач по теме «Силы упругости. Закон Гука»

– относительное удлинение (если

Примеры решения задач по теме «Силы упругости. Закон Гука»

то наблюдается упругая деформация). В СИ

Примеры решения задач по теме «Силы упругости. Закон Гука»

– безразмерная величина.

Твердое тело, находящееся в деформированном состоянии, характеризуется механическим напряжением.

Механическое напряжение — это физическая величина, равная отношению модуля силы упругости  возникшей во время деформации, к площади поперечного сечения тела

Примеры решения задач по теме «Силы упругости. Закон Гука»

Единица измерения механического напряжения в СИ – паскаль (Па):

Примеры решения задач по теме «Силы упругости. Закон Гука»

Закон Гука: При малых деформациях механическое напряжение прямо пропорционально относительному удлинению:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Модуль Юнга – это физическая величина, численно равная механическому напряжению, необходимому для увеличения длины тонкого стержня в два раза. Модуль Юнга зависит от материала, из которого изготовлено тело, единица его измерения в СИ — паскаль:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Приняв во внимание уравнения (2.24) и (2.25) в законе Гука (2.26), получим:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

называется коэффициентом упругости или жесткостью стержня.

Жесткость, являясь коэффициентом пропорциональности между силой упругости и абсолютным удлинением, зависит от материала, из которого изготовлено тело, и его геометрических размеров.

Приняв во внимание формулу (2.28) в формуле (2.27), закон Гука можно записать следующим образом:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Обычно закон Гука имеет вид:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Единица измерения жесткости в СИ:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Диаграмма растяжения

Диаграмма растяжения – это график зависимости механического напряжения от относительного удлинения твердого тела. На диаграмме (с):

Примеры решения задач по теме «Силы упругости. Закон Гука»

a) участок 0-1 – это участок, на котором при малых деформациях механическое напряжение прямо пропорционально относительному удлинению, то есть выполняется закон Гука.

Максимальное значение механического спряжения, при котором еще выполняется закон Гука, называется пределом пропорциональности

Примеры решения задач по теме «Силы упругости. Закон Гука»

На участке графика выше цифры 1 закон Гука нарушается, наблюдается нелинейная деформация;

b) участок 1-2 — соответствует участку, на котором упругая деформация сохраняется, то есть после прекращения внешнего воздействия образец возвращается к своим первоначальным размерам.

Максимальное напряжение, при котором еще возникает упругая деформация, называется пределом упругости

Примеры решения задач по теме «Силы упругости. Закон Гука»

Механическое напряжение больше предела упругости вызывает пластическую деформацию;

c) участок 2-3 – механическое напряжение, соответствующее пластической деформации;

d) участок 3-4 — это участок “текучести” образца. Механическое напряжение

Примеры решения задач по теме «Силы упругости. Закон Гука»

имеет постоянное значение, относительное удлинение увеличивается;

e) участок 4—5 — это участок с резким увеличением механического напряжения, соответствует разрушению тела.

Максимальное механическое напряжение, приводящее к разрушению тела, называется пределом прочности

Примеры решения задач по теме «Силы упругости. Закон Гука»

Силы упругости и упругие деформации

Сила упругости (реакции) возникает в ответ на действие деформирующей силы. Она противоположна по направлению и равна по модулю деформирующей силе. Сила упругости приложена к телу, находящемуся на опоре или подвесе.

Силы упругости обусловлены взаимодействиями между атомами и, как и силы трения, являются по своей природе электромагнитными силами. Они возникают при смещении атомов вещества из положений равновесия. В результате деформации силы электрических взаимодействий стремятся возвратить атомы в первоначальные положения.

Деформация — изменение формы или размеров тела, обусловленное изменением взаимного расположения атомов тела под действием внешних сил или при изменении температуры тела.

Если после прекращения действия сил размер и форма тела полностью восстанавливаются, то деформация называется упругой, а если нет — пластической.

Деформации бывают нескольких видов: растяжение или сжатие (рис. 40); сдвиг (рис. 41); кручение (рис. 42); изгиб (рис. 43).

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Упругое тело — одна из механических моделей физических тел, используемая для описания в тех случаях, когда деформацией тела пренебречь нельзя.

Силы упругости возникают между телами только в том случае, если тела деформированы. Движение упругого тела или его взаимодействие с другими телами сопровождается такими изменениями формы, что при прекращении взаимодействия или возврате к исходному механическому состоянию его первоначальная форма восстанавливается. Это означает, что в упругом теле можно пренебречь остаточной деформацией, т. е. изменениями формы и размеров тел после прекращения их взаимодействия.

Особенности сил упругости:

  • возникают вследствие деформации одновременно у двух взаимодействующих тел;
  • перпендикулярны поверхностям взаимодействующих тел;
  • по направлению противоположны смещению частиц деформируемого тела;
  • при упругих деформациях выполняется закон Гука:

Примеры решения задач по теме «Силы упругости. Закон Гука»

возникающей в теле при упругих деформациях, прямо пропорционален его абсолютному удлинению (сжатию)

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

где k — жесткость тела,

Примеры решения задач по теме «Силы упругости. Закон Гука»

— длина недеформированного тела, l — длина деформированного тела.

Из соотношения (1) определим жесткость тела:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Единицей жесткости в СИ является ньютон на метр

Примеры решения задач по теме «Силы упругости. Закон Гука»

Жесткость k не зависит от приложенных сил и величины деформации и определяется только размером деформируемого тела и веществом, из которого оно состоит.
Впервые свой закон Роберт Гук опубликовал в 1676 г. в виде анаграммы ut tension sic vis — как напряжение, так сила.
Деформации характеризуют двумя величинами: абсолютное удлинение (сжатие)

Примеры решения задач по теме «Силы упругости. Закон Гука»

и относительное удлинение (сжатие)

Примеры решения задач по теме «Силы упругости. Закон Гука»

Пружина является моделью деформируемого тела, деформации которого подчиняются закону Гука. Она обладает пренебрежимо малой массой и описывается двумя параметрами — длиной в недеформированном состоянии

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Со стороны опоры на тело действует сила нормальной реакции опоры

Примеры решения задач по теме «Силы упругости. Закон Гука»

(рис. 44), которая возникает вследствие деформации опоры. Со стороны тела на опору действует сила давления

Примеры решения задач по теме «Силы упругости. Закон Гука»

Со стороны подвеса на тело действует сила упругости нити

Примеры решения задач по теме «Силы упругости. Закон Гука»

Со стороны тела на подвес действует сила натяжения подвеса

Примеры решения задач по теме «Силы упругости. Закон Гука»

Для тонкого однородного упругого стержня, деформированного некоторой силой

Примеры решения задач по теме «Силы упругости. Закон Гука»

направленной вдоль него, модуль абсолютного удлинения (сжатия)

Примеры решения задач по теме «Силы упругости. Закон Гука»

прямо пропорционален длине стержня

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Для выяснения физического смысла модуля Юнга и определения единицы его измерения выразим Е из приведенной формулы:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Если предположить, что в этом соотношении

Примеры решения задач по теме «Силы упругости. Закон Гука»

то модуль Юнга численно равен силе, способной увеличить длину образца вдвое, если площадь его поперечного сечения равна единице. На практике такое удлинение возможно только для резины или искусственно создаваемых материалов.
Единицей модуля упругости Е в СИ является ньютон на метр квадратный

Примеры решения задач по теме «Силы упругости. Закон Гука»

Модули Юнга Е некоторых веществ

Примеры решения задач по теме «Силы упругости. Закон Гука»

Еще одной из основных величин, характеризующих механические свойства тел, является механическое напряжение

Примеры решения задач по теме «Силы упругости. Закон Гука»

Гука с использованием модуля Юнга и относительного удлинения. Из формулы для модуля упругости следует, что

Примеры решения задач по теме «Силы упругости. Закон Гука»

Откуда, с учетом определения относительного удлинения и напряжения, находим

Примеры решения задач по теме «Силы упругости. Закон Гука»

Жесткость стержня k определяется через модуль упругости (модуль Юнга) Е, его длину

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Сила упругости и вес тела

Первый в мире космонавт Ю. А. Гагарин вспоминал: «я почувствовал, что какая-то непреодолимая сила все больше вжимает меня в кресло. И хотя оно было расположено так, чтобы минимизировать влияние гигантского веса, который навалился на мое тело, было трудно пошевелить рукой и ногой».

Примеры решения задач по теме «Силы упругости. Закон Гука»

Нажмем на кнопку авторучки — пружина в корпусе сожмется, и ее длина уменьшится; помнем в руке кусочек пластилина — изменится его форма; надавим пальцем на губку — одновременно изменятся и форма, и размеры губки.

Изменение формы и (или) размеров тела называют деформацией.

Если прекратить сжимать пружину, давить на губку, то есть устранить действие внешних сил, и пружина, и губка полностью восстановят свои форму и размеры, то есть перестанут быть деформированными (рис. 12.1). А вот форма кусочка пластилина не восстановится — пластилин ее «не помнит» и останется деформированным.

Примеры решения задач по теме «Силы упругости. Закон Гука»

Рис. 12.1. После прекращения действия силы упругие тела восстанавливают свои форму и размеры

Деформации, которые полностью исчезают после прекращения действия на тело внешних сил, называют упругими; деформации, которые сохраняются, называют пластическими.

Причина возникновения и упругой, и пластической деформаций в том, что под действием сил, приложенных к телу, его различные части смещаются относительно друг друга. По характеру смещения частей различают деформации сжатия, растяжения, сдвига, изгиба, кручения. Остановимся на упругой деформации сжатия и растяжения. Для этого воспользуемся механической моделью твердого тела (рис. 12.2).

Примеры решения задач по теме «Силы упругости. Закон Гука»

Рис. 12.2. Механическая модель твердого тела: параллельные пластины (1), имитирующие слои молекул, соединены пружинами (2), имитирующими взаимодействия между молекулами

Нажмем на модель твердого тела сверху рукой: верхние пластины начнут смещаться вниз, нижние же останутся почти неподвижными, и в результате модель изменит размеры — деформируется. Примерно так же при сдавливании твердого тела смещаются в направлении действия силы слои его молекул, в результате чего размеры тела уменьшаются. Такую деформацию называют деформацией сжатия — ее испытывают ножки столов и стульев, фундаменты домов и т. п. (см. рис. 12.3, а).

Примеры решения задач по теме «Силы упругости. Закон Гука»

Если же тело растягивать, слои молекул раздвинутся и тело также изменит свои размеры. Такую деформацию называют деформацией растяжения — ее испытывают тросы, цепи в подъемных устройствах, стяжки между вагонами и т. д. (см. рис. 12.3, б).

Физическую величину, равную изменению длины тела при деформации растяжения или сжатия, называют удлинением ∆l (или x):

Примеры решения задач по теме «Силы упругости. Закон Гука»

где l — длина деформированного тела;

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Когда возникает сила упругости

Если вы сгибаете ветку дерева, сжимаете эспандер, натягиваете тетиву лука, то есть деформируете эти тела, вы чувствуете их сопротивление: со стороны тел начинает действовать сила, стремящаяся восстановить то состояние тела, в котором тело находилось до деформации. Эту силу называют силой упругости (рис. 12.5).

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

— это сила, которая возникает при деформации тела и стремится вернуть тело в недеформированное состояние. Изучая деформацию тонких длинных стержней, английский естествоиспытатель Роберт Гук (1635–1703) установил закон, позже получивший название закон Гука:

При малых упругих деформациях растяжения или сжатия сила упругости прямо пропорциональна удлинению тела:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Знак «–» показывает, что сила упругости направлена в сторону, противоположную удлинению.

Закон Гука можно записать и для модулей:

Примеры решения задач по теме «Силы упругости. Закон Гука»

, где x = ∆l — удлинение. Поскольку сила упругости прямо пропорциональна удлинению тела, график зависимости

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Коэффициент пропорциональности k называют жесткостью тела (стержня, балки, шнура, пружины). Жесткость тела можно определить, воспользовавшись законом Гука:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Единица жесткости в СИ — ньютон на метр:

Примеры решения задач по теме «Силы упругости. Закон Гука»

  • Жесткость — это характеристика тела, поэтому она не зависит ни от силы упругости, ни от удлинения тела.
  • Жесткость зависит от упругих свойств материала, из которого изготовлено тело; от формы тела и его размеров.

Какова природа силы упругости

Известно, что все тела состоят из атомов (молекул, ионов), а те, в свою очередь, — из ядра, имеющего положительный заряд, и электронного облака, заряд которого отрицательный. Между заряженными составляющими частиц вещества существуют силы электромагнитного притяжения и отталкивания.

Если тело не деформировано, силы притяжения равны силам отталкивания. При деформации взаимное расположение частиц в теле изменяется. Если расстояние между частицами увеличивается, то электромагнитные силы притяжения становятся больше, чем силы отталкивания, и частицы начинают притягиваться друг к другу. Если расстояние между частицами уменьшается, то больше становятся силы отталкивания. Другими словами, частицы вещества «стремятся» вернуться к состоянию равновесия. Таким образом, сила упругости — результат электромагнитного взаимодействия частиц вещества.

Некоторые виды сил упругости

Обычно силу упругости обозначают символом

Примеры решения задач по теме «Силы упругости. Закон Гука»

Деформация опоры вызывает появление силы упругости, действующей на тело перпендикулярно поверхности опоры. Эту силу называют силой нормальной реакции опоры и обозначают символом

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Если тело закрепить на подвесе (нити, жгуте, шнуре), то подвес деформируется (растягивается) и будет действовать на тело с определенной силой упругости, направленной вдоль подвеса, — силой натяжения подвеса

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Все тела вследствие гравитационного притяжения сдавливают или прогибают опору либо растягивают подвес. Силу, характеризующую такое действие тел, называют весом и обозначают символом

Примеры решения задач по теме «Силы упругости. Закон Гука»

На рис. 12.9, 12.10 показано, как возникает эта сила, если тело находится вблизи поверхности Земли и действует на горизонтальную опору или вертикальный подвес. В таких случаях согласно третьему закону Ньютона вес тела по модулю равен силе нормальной реакции опоры или силе натяжения подвеса и направлен противоположно им:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Именно такие случаи возникновения веса тела мы будем рассматривать далее. Обратите внимание! Если тело находится в состоянии покоя или равномерного прямолинейного движения, то вес тела по модулю равен силе тяжести (

Примеры решения задач по теме «Силы упругости. Закон Гука»

Действительно, в таком случае сила тяжести и сила нормальной реакции опоры (или сила натяжения подвеса) скомпенсированы, поэтому они равны по модулю и противоположны по направлению:

Примеры решения задач по теме «Силы упругости. Закон Гука»

; так как

Примеры решения задач по теме «Силы упругости. Закон Гука»

Но, в отличие от силы тяжести, которая приложена к телу, вес приложен к опоре или подвесу.

Вес тела и сила тяжести различаются и по своей природе: сила тяжести — это гравитационная сила, а природа веса тела — электромагнитная.

При каких условиях вес тела изменяется

Нам кажется, что в невесомости находятся только космонавты на орбите, а перегрузки испытывают только летчики при выполнении фигур высшего пилотажа и космонавты. Но это не так.

Примеры решения задач по теме «Силы упругости. Закон Гука»

Как испытать состояние невесомости

Состояние тела, при котором вес тела равен нулю, называют состоянием невесомости. В состоянии невесомости на тело действует только сила тяжести (тело свободно падает), и наоборот: если тело движется только под действием силы тяжести, оно находится в состоянии невесомости. В состоянии невесомости тело не давит на опору и части тела не давят друг на друга; космонавт на орбите (вспомните: на орбите космический корабль движется только под действием силы тяжести) не чувствует своего веса, предмет, выпущенный из его рук, не падает. Дело в том, что сила тяжести сообщает каждому телу и любой части тела одинаковое ускорение.

Чтобы испытать состояние невесомости, достаточно подпрыгнуть. А вот для тренировки космонавтов используют тот факт, что из-за действия силы тяжести траектория тела, брошенного под углом к горизонту, — параболическая. Если в верхних слоях атмосферы самолет направить по восходящей траектории («бросить» под углом к горизонту) и существенно уменьшить тягу двигателей, то некоторое время все тела в самолете будут находиться в состоянии невесомости.

Самолет делает «мертвую петлю», описывая в вертикальной плоскости окружность радиусом 250 м. Во сколько раз вес летчика в нижний части траектории больше силы тяжести, если скорость движения самолета 100 м/с?

Анализ физической проблемы. Самолет движется по окружности, а значит, летчик имеет центростремительное ускорение. На пояснительном рисунке изобразим силы, действующие на летчика, и направление его ускорения. Выберем одномерную систему координат, которую свяжем с точкой на поверхности Земли, ось ОY направим вертикально вверх.

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

Примеры решения задач по теме «Силы упругости. Закон Гука»

По второму закону Ньютона:

Примеры решения задач по теме «Силы упругости. Закон Гука»

В проекциях на ось ОY:

Примеры решения задач по теме «Силы упругости. Закон Гука»

По третьему закону Ньютона P N= , поэтому

Примеры решения задач по теме «Силы упругости. Закон Гука»

Найдем значения искомых величин:

Примеры решения задач по теме «Силы упругости. Закон Гука»

Анализ результата. Вес летчика в 5 раз больше силы тяжести — это реальный результат.

Примеры решения задач по теме «Силы упругости. Закон Гука»

Алгоритм решения задач на движение тела под действием нескольких сил

  • Прочитайте условие задачи. Выясните, какие силы действуют на тело, движется тело с ускорением или равномерно прямолинейно.
  • Запишите краткое условие задачи. При необходимости переведите значения физических величин в единицы СИ.
  • Выполните рисунок, на котором укажите силы, действующие на тело, и направление ускорения движения тела.
  • Выберите инерциальную СО. Количество осей координат и их направление выберите, исходя из условия задачи.
  • Проверьте единицу, найдите числовое значение искомой величины
  • Проанализируйте результат. Запишите ответ.
  • Запишите уравнение второго закона Ньютона в векторном виде и в проекциях на оси координат. Запишите формулы для вычисления сил. Получив систему уравнений, решите ее. Если в задаче есть дополнительные условия, используйте их.
  • Деформацией называют изменение формы или (и) размеров тела. Если после прекращения действия на тело внешних сил деформация полностью исчезает, это упругая деформация; если деформация сохраняется, это пластическая деформация.
  • Силу, которая возникает в теле при его деформации и стремится вернуть тело в недеформированное состояние, называют силой упругости. Сила упругости имеет электромагнитную природу, ее можно рассчитать по закону Гука: , где k — жесткость тела. Закон Гука выполняется только при малых упругих деформациях.
  • Вес тела — это сила, с которой вследствие гравитационного притяжения тело давит на опору или растягивает подвес. Если опора горизонтальная или подвес вертикальный, согласно третьему закону Ньютона вес тела равен по модулю и противоположен по направлению силе нормальной реакции опоры (силе натяжения подвеса): .
  • Если тело находится в состоянии покоя или движется равномерно прямолинейно, вес тела по модулю равен силе тяжести: .
  • Если тело движется с ускорением, направленным вертикально вверх, это тело испытывает перегрузки (вес тела больше, чем его вес в состоянии покоя): .
  • Если тело движется с ускорением, направленным вертикально вниз, вес тела меньше, чем его вес в состоянии покоя:

Физика в цифрах:

  • P= 0 — отсутствие нагрузки (состояние невесомости).
  • P=mg — «нормальная» нагрузка (на поверхности Земли).
  • P= 3 mg — максимальная нагрузка, которая ощущается на «американских горках».
  • P= 4,3 mg — максимальная нагрузка, на которую рассчитаны пассажирские самолеты.
  • P= 5 mg — нагрузка, при которой большинство людей теряют сознание.
  • P= 9 mg — нагрузка, которую может испытывать человек за штурвалом истребителя при крутых виражах.

В окружающем нас мире физические тела постоянно взаимодействуют друг с другом. В результате взаимодействия тел изменяются их скорости. Скорость тела после взаимодействия может увеличиваться, уменьшаться, менять свое направление.

Вы уже знаете, что изменение скорости тела обратно пропорционально его массе. Чем меньше масса тела, тем сильнее меняется его скорость после взаимодействия.

Но часто не указывают, какое тело и как именно подействовало на другое. Просто говорят, что на тело действует сила или к нему приложена сила. На данном уроке мы разберем это новое для нас определение.

Оцените статью
Добавить комментарий