Для операции умножения натуральных чисел ℕ характерен ряд результатов, которые справедливы для любых умножаемых натуральных чисел. Эти результаты называются свойствами. В данной статье мы сформулируем свойства умножения натуральных чисел, приведем их буквенные определения и примеры.
Умножение, сложение, вычитание и деление – основные операции с целыми числами. Результаты этих операций с любыми целыми числами обладают рядом характеристик. Иначе говоря, операции умножения, сложения, вычитания и деления целых чисел обладают свойствами. Данная статья посвящена рассмотрению основных свойств умножения, сложения, вычитания и деления целых чисел.
Вычитание целых чисел. Основные свойства
Вычитание – действие, обратное сложению. Число c является разностью двух чисел a и b тогда, когда сумма b+c равна a. Можно сказать, что разность чисел a и b – это сумма чисел a и -b. Свойства вычитания являются следствием свойств сложения и умножения.
Основные свойства вычитания
- Вычитание чисел не обладает переместительным свойством за исключением случая, когда a=b. a-b≠b-a.
- Вычитание суммы двух чисел из другого числа: a-(b+c)=a-b-c.
- Вычитание целого числа из суммы: a+b-c=a-c+b=a+(b-c).
- Распределительное свойство умножения относительно вычитания: a·(b-c)=a·b-a·c.
Деление целых чисел. Основные свойства
Деление – операция, обратная умножению. Число c называется частным от деления чисел a и b, когда произведение b·c равно a. Запишем основные свойства деления целых чисел.
- Деление на нуль невозможно.
- Деление нуля на число: 0a=0.
- Деление на единицу: a1=a.
- Для деления переместительное свойства не выполняется: ab≠ba.
- Деление суммы и разности на число: a±bc=ac±bc.
- Деление произведения на число: a·bc=ac·b, если a делится на c; a·bc=a·bс, если b делится на c; a·bc=a·bс=ac·b, если a и b делятся на c.
- Деление числа на произведение: ab·c=ab·1c=ac·1b.
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Сложение целых чисел. Основные свойства
Все свойства сложения натуральных чисел оказываются справедливы и для целых чисел. Ведь множество целых чисел ℤ включает в себя множество натуральных чисел ℕ. Приведем ниже основные свойства сложения.
Коммутативное свойство сложения
Переместительное (коммутативное свойство) или переместительный закон.
От перемены мест слагаемых сумма не меняется.
Согласно этому свойству, справедливо равенство:
Свойство коммутативности работает вне зависимости от знака.
Ассоциативное свойство сложения
Сочетательное (ассоциативное свойство) или сочетательный закон.
Сложение целого числа с суммой двух целых чисел эквивалентно сложению суммы двух первых чисел с третьим.
Примечание: данное свойство применимо и для большего количества слагаемых.
Вот несколько примеров. Согласно свойству ассоциативности справедливы равенства:
1. Число нуль – нейтральный по сложению элемент.
Прибавление нуля к любому целому числу не меняет этого числа.
2. Сумма любого целого числа и противоположного ему числа равна нулю.
Умножение целых чисел. Основные свойства
Как и в случае со сложением, все свойства умножения натуральных чисел переносятся на целые числа.
Для умножения также действуют переместительный и сочетательный (коммутативный и ассоциативный) законы.
Переместительное свойство умножения
От перемены мест множителей произведение не меняется.
Приведем пример. Очевидно, что произведение целых чисел 2·3 эквивалентно произведению 3·2.
Сочетательное свойство умножения
Сочетательное свойство для умножения эквивалентно сочетательному свойству сложения. В буквенном виже оно записывается следующим образом:
a, b, c – произвольные целые числа.
Примечание: данное свойство применимо и для большего количества множителей.
В соответствии с этим свойством можно говорить о справедливости следующих равенств:
Умножение числа на нуль
Результатом умножения любого целого числа на нуль является число нуль.
Справедливо и обратное: произведение двух целых чисел a и b равно нулю, если хотя бы один из множителей равен нулю.
Умножение числа на единицу
Умножение любого целого числа на единицу дает в результате это число. Иными словами, умножение на единицу не изменяет умножаемое число.
Распределительное свойство умножения относительно суммы.
Произведение целого числа a на сумму двух чисел b и c равно сумме произведений a·b и a·c.
Данное свойство часто используется при упрощении выражений, одновременно содержащих как операции сложения, так и умножения.
В совокупности с ассоциативным свойством и распределительным законом можно легко расписать произведение целого числа на сумму из более чем трех слагаемых, а также произведение сумм.
Законы сложения целых чисел нужны для того, чтобы упростить сложения чисел. Ведь, прибавить все подряд числа не всегда легко, иногда лучше их сгруппировать. Для этого и нужны законы сложения целых чисел.
Переместительный закон сложения.
Правило и формула переместительного закона сложения.
Сложение двух целых чисел не зависит от их порядка.
a+b=b+a
Пример:
Если мы сложим 3+5=8 или 5+3=8 результат сложения не измениться.
Если мы сложим (-3)+7=4 или 7+(-3)=4 результат сложения не измениться.
Сочетательный закон сложения.
Правило и формула сочетательного закона сложения.
К сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего, и результат не измениться.
(a+b)+c=a+(b+c)
Рассмотрим пример:
(3+5)+9=8+9=17
3+(5+9)=3+14=17
От сочетания слагаемых сумма не поменялась.
Делаем вывод на основе переместительного и сочетательного законов:
- Можно слагаемые менять местами.
- Записывать пример со слагаемыми без скобок. Скобки в сложении нужны для удобства восприятия примера.
- Записывать пример со слагаемыми со скобками, для более простого вычисления суммы.
Доказательство:
a+b+c+d=(a+b+c)+d=d+(a+b+c)= d+((a+b)+c)= d+(c+(a+b))=(d+c)+(a+b)=(c+d)+(a+b)
Вопросы по теме:
Какие законы сложения вы знаете?
Ответ: переместительный и сочетательный закон.
Можно ли менять местами слагаемые?
Ответ: да по переместительному закону.
Обязательно ли при сложении числа заключать в скобки?
Ответ: нет.
Пример №1:
Вычислите, применяя законы сложения: а) 12+479+88 б) 3+154+16
Решение:
а) 12+479+88=(12+88)+479=100+479=579
б) 3+154+16=3+(154+16)=3+170=173
Пример №2:
Примените переместительный закон сложения: а) 4+5 б) 1298+34
Решение:
а) 4+5=5+4=9
б) 1298+34=34+1298=1332
Пример №3:
Примените сочетательный закон сложения: а) 2+(-4+5) б) (-1+3)+(-8)
Решение:
а) 2+(-4+5)=(2+(-4))+5=(-2)+5=3
б) (-1+3)+(-8)=-1+(3+(-8))=-1+(-5)=-6
Пример №4:
Вычислите, применяя законы сложения: а) 23+((-23)+50) б) -2+(-4)+(-8)+8+4+2
Решение:
а) 23+((-23)+50)=(23+(-23))+50=0+50=50
б) -2+(-4)+(-8)+8+4+2=(-2+2)+(-4+4)+(-8+8)=0
Что такое умножение
Умножение — такое арифметическое действие, когда сложение одинаковых чисел происходит искомое количество раз.
Умножение имеет широкую матрицу для применения.
Знак умножения в алгебре обозначается (∙) точкой в середине строки. Допустимо в печати использование крест (х), в компьютерной печати нередко используется звездочка (*).
Описание основных правил, порядок действий
Чтобы произвести умножение в алгебре, нужно помнить и понимать смысл самой математической операции.
Познакомимся с алгоритмом умножения в столбик. Это поможет в решении многих примеров, в том числе с дробями. Ученик действует по принципу пишу, затем умножаю единицы, затем десятки, наконец сотни.
Чтобы произвести умножение столбиком, действуем последовательно.
- Сначала умножаем единицы — 5 на 6, записываем 0, держим в уме 3 (3 перейдет в десятки).
- Затем умножаем 2 на 6, получаем 12, добавляем 3. Записываем в строку число 15.
- Умножаем 5 на 1, 2 на 1. Важно, что записываем 2 в сотни, а 5 — в десятки.
- В конце необходимо найти сумму полученных чисел. Переносим 0 из единиц, в десятках складываем 5 + 5, записываем 0, 1 — в уме. Складываем сотни 1 + 2 + 1 (который был в уме). Итого 4. А финальный ответ: 400.
Законы с примерами, как проверить результат
В умножении, как и в делении, сложении и вычитании, есть свои нормы и порядки.
Переместительный закон умножения
От перестановки слагаемых сумма чисел не меняется. Этот же закон действует и для умножения. Если множитель и множимое поменять местами, полученное произведение чисел не изменится.
Сочетательный закон умножения
Распределительный закон умножения действует относительно двух других важных операций: сложение и вычитание.
В нашей жизни есть законы, которые надо соблюдать. Соблюдение законов гарантирует стабильность и гармоничное развитие. Несоблюдение же законов приводит к печальным последствиям.
У математики есть свои законы, которые тоже следует соблюдать. Несоблюдение законов математики приводит в лучшем случае к тому, что оценка учащегося снижается, а в худшем случае — к тому что падают самолёты, зависают компьютеры, улетают крыши домов от сильного ветра, снижается качество связи и тому подобные нехорошие явления.
Законы математики состоят из простых свойств. Эти свойства нам знакомы со школы. Но не мешает вспомнить их ещё раз, а лучше всего записать или выучить наизусть.
В данном уроке мы рассмотрим лишь малую часть законов математики. Их нам будет достаточно для дальнейшего изучения математики.
Переместительный закон сложения говорит о том, что от перестановки мест слагаемых сумма не изменяется. Действительно, прибавьте пятерку к двойке — получите семёрку. И наоборот, прибавьте двойку к пятерке — опять получите семёрку:
5 + 2 = 7
2 + 5 = 7
Если на одну чашу весов положить пакет, в котором 10 килограмм яблок, и на другую чашу так же положить пакет, в котором 10 килограмм яблок, то весы выровнятся, и не важно что яблоки в пакетах лежат вразброс.
Если мы возьмём пакет с весов и перемешаем яблоки находящиеся в нём, словно шары в лотерейном мешке, пакет всё так же будет весить 10 килограмм. От перестановки мест слагаемых сумма не изменится. Слагаемые в данном случае это яблоки, а сумма это итоговый вес.
Таким образом, между выражениями и можно поставить знак равенства. Это будет означать, что их сумма равна:
5 + 2 = 2 + 5
Полагаем что вы изучили один из предыдущих уроков, который назывался выражения, поэтому мы без тени смущения запишем переместительный закон сложения с помощью переменных:
a + b = b + a
Записанный переместительный закон сложения будет работать для любых чисел. Например, возьмём любых два числа. Пусть . Мы присвоили переменным и значения и соответственно. Эти значения отправятся в главное выражение и подставятся куда нужно. Число подставится вместо , число место
Сочетательный закон сложения говорит о том, что результат сложения нескольких слагаемых не зависит от порядка действий. Этот закон позволяет группировать слагаемые для удобства их вычислений.
Рассмотрим сумму из трёх слагаемых:
2 + 3 + 5
Чтобы вычислить данное выражение, можно сначала сложить числа 2 и 3 и полученный результат сложить с числом 5. Для удобства сумму чисел 2 и 3 можно заключить в скобки, указывая тем самым, что эта сумма будет вычислена в первую очередь:
2 + 3 + 5 = (2 + 3) + 5 = 5 + 5 = 10
Либо можно сложить числа 3 и 5, затем полученный результат сложить с числом 2
2 + 3 + 5 = 2 + (3 + 5) = 2 + 8 = 10
Видно, что в обоих случаях получается один и тот же результат.
Таким образом, между выражениями (2 + 3) + 5 и 2 + (3 + 5) можно поставить знак равенства, поскольку они равны одному и тому же значению:
(2 + 3) + 5 = 2 + (3 + 5)
Запишем сочетательный закон сложения с помощью переменных:
(a + b) + c = a + (b + c)
Переместительный закон умножения говорит о том, что если множимое и множитель поменять местами, то произведение не изменится. Давайте проверим так ли это. Умножим пятерку на двойку, а затем наоборот двойку на пятерку.
5 × 2 = 10
2 × 5 = 10
В обоих случаях получается один и тот же результат, поэтому между выражениями и можно поставить знак равенства, поскольку они равны одному и тому же значению:
5 × 2 = 2 × 5
Запишем переместительный закон умножения с помощью переменных:
a × b = b × a
Для записи законов в качестве переменных необязательно использовать именно буквы и . Можно использовать любые другие буквы, например и или и . Тот же переместительный закон умножения можно записать следующим образом:
x × y = y × x
Сочетательный закон умножения говорит о том, что если выражение состоит из нескольких сомножителей, то произведение не будет зависеть от порядка действий.
Рассмотрим следующее выражение:
2 × 3 × 4
Данное выражение можно вычислять в любом порядке. Сначала можно перемножить числа 2 и 3, и полученный результат умножить на 4:
Либо сначала можно перемножить числа 3 и 4, и полученный результат перемножить с числом 2
Таким образом, между выражениями (2 × 3) × 4 и 2 × (3 × 4) можно поставить знак равенства, поскольку они равны одному и тому же значению:
Запишем сочетательный закон умножения с помощью переменных:
a × b × с = (a × b) × с = a × (b × с)
Пример 2. Найти значение выражения 1 × 2 × 3 × 4
Данное выражение можно вычислять в любом порядке. Вычислим его слева направо в порядке следования действий:
Распределительный закон умножения
Распределительный закон умножения позволяет умножить сумму на число или число на сумму.
Мы знаем, что сначала надо выполнить действие в скобках. Выполняем:
В главном выражении выражение в скобках заменим на полученную восьмёрку:
8 × 2 = 16
Получили ответ 16. Этот же пример можно решить с помощью распределительного закона умножения. Для этого каждое слагаемое, которое в скобках, нужно умножить на 2, затем сложить полученные результаты:
Мы рассмотрели распределительный закон умножения слишком развёрнуто и подробно. В школе этот пример записали бы очень коротко. К такой записи тоже надо привыкать. Выглядит она следующим образом:
(3 + 5) × 2 = 3 × 2 + 5 × 2 = 6 + 10 = 16
Или ещё короче:
(3 + 5) × 2 = 6 + 10 = 16
Теперь запишем распределительный закон умножения с помощью переменных:
(a + b) × c = a × c + b × c
Давайте внимательно посмотрим на начало этого распределительного закона умножения. Начало у него выглядит так: (a + b) × c.
Если рассматривать выражение в скобках (a + b), как единое целое, то это будет множимое, а переменная будет множителем, поскольку соединены они знаком умножения ×
Из переместительного закона умножения мы узнали, что если множимое и множитель поменять местами, то произведение не изменится.
Если множимое и множитель поменять местами, то получим выражение . Тогда получится, что мы умножаем переменную на сумму . Для выполнения такого умножения, опять же применяется распределительный закон умножения. В данном случае переменную нужно умножить на каждое слагаемое в скобках:
c × (a + b) = c × a + c × b
Пример 2. Найти значение выражения 5 × (3 + 2)
Умножим число 5 на каждое слагаемое в скобках и полученные результаты сложим:
5 × (3 + 2) = 5 × 3 + 5 × 2 = 15 + 10 = 25
Пример 3. Найти значение выражения 6 × (5 + 2)
Умножим число 6 на каждое слагаемое в скобках и полученные результаты сложим:
6 × (5 + 2) = 6 × 5 + 6 × 2 = 30 + 12 = 42
Если в скобках располагается не сумма, а разность, то сначала нужно умножить множимое на каждое число, которое в скобках. Затем из полученного первого числа вычесть второе число. В принципе, ничего нового.
Пример 4. Найти значение выражения 5 × (6 − 2)
Умножим 5 на каждое число в скобках. Затем из полученного первого числа вычтем второе число:
5 × (6 − 2) = 5 × 6 − 5 × 2 = 30 − 10 = 20
Пример 5. Найти значение выражения 7 × (3 − 2)
Умножим 7 на каждое число в скобках. Затем из полученного первого числа вычтем второе число:
7 × (3 − 2) = 7 × 3 − 7 × 2 = 21 − 14 = 7
Задания для самостоятельного решения
Найдите значение выражения, используя распределительный закон умножения:
3 × (7 + 8) = 3 × 7 + 3 × 8 = 21 + 24 = 45
5 × (6 + 8) = 5 × 6 + 5 × 8 = 30 + 40 = 70
Найдите значение выражения, используя порядок выполнения действий:
4 × (5 + 4) + 9 × (3 + 2)
4 × (5 + 4) + 9 × (3 + 2) = 4 × 5 + 4 × 4 + 9 × 3 + 9 × 2 = 20 + 16 + 27 + 18 = 81
16 × (2 + 7) + 5 × (4 + 1)
16 × (2 + 7) + 5 × (4 + 1) = 16 × 2 + 16 × 7 + 5 × 4 + 5 × 1 = 32 + 112 + 20 + 5 = 169
Понравился урок? Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
СодержаниеОпределение действия сложение и компоненты сложенияПереместительный и сочетательный законы сложенияПравило прибавления слагаемого к сумме или суммы к слагаемомуИзменение суммы чисел с изменением слагаемыхСложение однозначных чиселСложение многозначного и однозначного чиселСложение двух многозначных чисел в столбикСложение в столбик нескольких многозначных чисел
Пройти тест по теме «Сложение и вычитание натуральных чисел» можно по ссылке. Проверьте свои знания!
Как вы уже знаете, любое натуральное число представляет собой единицу или собрание нескольких единиц. Так вот, мы можем взять несколько чисел и объединить все единицы, которые их составляют, в одно большое собрание. Число, которое получилось в результате этого объединения, называется .
Сумма чисел – это такое число, которое получается после объединения всех единиц других данных натуральных чисел.
Слагаемые – это числа, над которыми мы выполняем действие сложения. Иными словами, это те числа, количество единиц которых мы объединяем в новом числе.
Арифметическое действие – это нахождение нового числа при помощи двух или нескольких других данных чисел.
В курсе математики 5 класса изучаются основные арифметические действия – сложение, вычитание, умножение и деление.
Сложение – это арифметическое действие, которое выполняется для получения суммы нескольких чисел.
Или другими словами:
Сложение – это действие увеличения числа на количество единиц, содержащихся в другом числе.
Сумма – это результат действия сложения.
На записи действие сложения обозначается знаком (). То есть, если записано 3+2+5, то это означает, что нам нужно найти сумму этих трех чисел: 3, 2 и 5. Сумма записывается обычно справа от слагаемых после знака (): 3+2+5 = 10.
Сумма чисел состоит (слагается, складывается, – можно говорить по-разному) из двух или более слагаемых. Понятно, что сумма всегда больше любого ее слагаемого.
– это не что иное, как , обозначающего сумму этих слагаемых.
Компоненты действия сложения для двух слагаемых:
Компоненты сложения для трех слагаемых:
Действие сложения можно выполнить всегда. Действительно, так как натуральный ряд бесконечен, то мы всегда можем любые числа этого ряда объединить в другое, какое угодно большое число.
Действие сложения всегда имеет . Действительно, если мы, к примеру, отметим на координатном луче с началом в точке и единичным отрезком отрезок длиной , а потом построим еще один отрезок длиной , то у нас получится только единственный отрезок длиной .
Рисунок 1. Сумма двух чисел на координатном луче.
Основные свойства суммы натуральных чисел
Есть два основных закона суммы, из которых следуют остальные ее свойства:
- переместительный закон сложения,
- сочетательный закон сложения.
Сумма двух или нескольких чисел от изменения порядка сложения слагаемых не меняется. Это значит, что значение суммы не зависит от порядка выполнения действия сложение.
Например, в каком бы порядке мы ни складывали числа , и , результат неизменно будет :
Сумма нескольких чисел не поменяется, если некоторые слагаемые заменить их суммой. Это значит, что мы можем группировать слагаемые как угодно, а также выполнять действия сложения в любом порядке.
Например, если в нашем примере мы заменим слагаемые и их суммой, то результат останется такой же, как и при обычном сложении слагаемых:
То же самое будет, если мы заменим слагаемые и , или и их суммами:
Из этих законов вытекает правило прибавления слагаемого к сумме или суммы к слагаемому.
Для прибавления суммы некоторых чисел к числу или некоторого числа к сумме чисел, нужно сложить это число с одним из слагаемых суммы, а получившийся результат сложить последовательно с остальными слагаемыми.
Пример 1. Прибавление числа к сумме чисел:
Можно сразу вычислить сумму чисел в скобках и сложить ее с первым слагаемым:
Также можно использовать правило прибавления слагаемого и суммы. Результат при этом не поменяется
+ = 337;337+ = 401;401+ = или+ = 389;389+ = 401;401+= .
Пример 2. Прибавление суммы чисел к другому числу:
Можно сразу вычислить сумму чисел в скобках и сложить ее со вторым слагаемым
(++)+= 483+ =
Или можно использовать правило прибавления суммы чисел к числу. Результат останется тот же.
+ = 91;91+ = 331;331+ = или+ = 277;277+ = 331;331+ = .
Изменение суммы чисел с изменением слагаемых
Чтобы понять, как изменится сумма чисел, если изменить одно или несколько ее слагаемых, нужно вспомнить, что сумма представляет собой собрание всех единиц, из которых состоят слагающие ее числа. Поэтому, легко можно понять, что:
При увеличении одного из слагаемых на какое-то число (на какое-то количество единиц), сумма тоже увеличится на это же число (на это же количество единиц).
При уменьшении одного из слагаемых на какое-то число (на какое-то количество единиц), сумма тоже уменьшится на это же число (на это же количество единиц).
Эти два свойства справедливы и в обратную сторону. То есть, если увеличить или уменьшить сумму на какое-то число, тогда для сохранения равенства нужно соответственно увеличить или уменьшить одно из слагаемых.
Если увеличить одно из слагаемых на какое-то число (на какое-то количество единиц), а на это же число (на это же количество единиц), то в результате сумма .
Простой пример увеличения суммы при увеличении слагаемого: у вас есть 700 рублей; 200 рублей лежит в левом кармане, а 500 – в правом. Вы нашли на улице 300 рублей и положили их в левый карман, после чего там стало 200+300=500 рублей. Таким образом, всего у вас оказалось 500+500=1000 рублей, то есть, сумма всех ваших денег увеличилась на 300 рублей.
Попробуйте самостоятельно придумать примеры для всех трех правил.
Сложение однозначных чисел
Сложение двух однозначных чисел выполняется так: одно число увеличивается на количество единиц другого числа. То есть, единицы одного числа присоединяются к единицам другого числа.
Например, для нахождения суммы нужно к числу присоединить единицы. Тогда получим . А если нужно к числу прибавить число , или другими словами, найти сумму , то после присоединения к единиц числа получим и еще , то есть, число .
Сложение однозначных чисел – это первый и очень важный шаг в освоении этого арифметического действия. Если хорошо выучить все результаты сложения однозначных чисел между собой, тогда вы сможете намного быстрее складывать в уме любые числа.
Сложение многозначного числа с однозначным
Чтобы найти сумму многозначного числа и однозначного, можно действовать двумя способами. Оба они основаны на свойствах суммы чисел. Рассмотрим их на примерах.
Допустим, нам нужно найти сумму чисел и .
Представим число в виде суммы и прибавим к ней число . После этого, найдем сумму однозначных чисел и , получится . Прибавим этот результат к числу . Число – это , поэтому мы к десяткам прибавляем десяток, получаем десятков, или число , а к нему прибавляем еще (оставшиеся от числа ), и получим .
То есть, мы проделываем такие действия:
88+5 = 80+8+5 = 80+13 = 80+10+3 = 90+3=93.
Замечаем, что к , то получим полный десяток, то есть, число . Тогда представляем число в виде суммы ; число складываем с , получаем замеченное нами ранее число . Добавляем к нему оставшееся число, и получаем результат .
То есть, ход вычисления был такой:
88+5 = 88+2+3 = 90+3 = 93.
Сложение в столбик многозначных чисел
Сумма многозначных чисел удобно вычисляется, если использовать так называемое сложение в столбик.
Сложение в столбик – это способ нахождения суммы чисел путем их записи друг под другом таким образом, чтобы соответствующие разряды разных чисел находились на одной вертикали (один под другим).
Этот способ простой, и он помогает не запутаться во время вычисления, не допустить ошибки. Но, чтобы складывать быстро, как я и говорил раньше, вам нужно очень хорошо знать все попарные суммы однозначных чисел.
Итак, допустим, что нам нужно найти сумму :
Запишем их друг под другом таким образом, чтобы совпадали соответствующие разряды обоих чисел, т.е. единицы под единицами, десятки под десятками и т.д. После этого, под вторым слагаемым проводим горизонтальную черту, а между слагаемыми ставим знак действия, т.е. плюс. У нас получилась такая запись:
Теперь нам нужно сложить между собой единицы каждого разряда, начиная с первого: сперва простые единицы, потом десятки единиц, потом сотни единиц и т.д. Результаты этих сложений записываем под чертой в том разряде, единицы которого мы складывали.
Начинаем с простых единиц: . У нас получилось число , то есть, десяток и единица. мы записываем под чертой в разряде единиц, а получившийся нужно будет дополнительно прибавить к сумме единиц разряда десятков. Чтобы не забыть совершить это действие, мы пишем разряда десятков маленькую цифру или ставим там точку.
Про подобное действие обычно говорят: «один пишем, один в уме» , то есть, оставляем в памяти, чтобы не забыть добавить при следующем действии.
Далее переходим к десяткам. У первого слагаемого единицы , а у второго , поэтому: . Мы помним, что после сложения простых единиц у нас образовался , поэтому к этому результату добавляем еще единицу: . У нас получилось , поэтому записываем цифру под чертой в разряде десятков.
Следующими идут сотни: . Первым делом проверяем, не нужно ли нам дополнительно добавлять единицу? В нашем случае нет, потому что на предыдущем шаге при сложении десятков мы получили . Поэтому, пишем под чертой в разряде сотен цифру . И у нас получилось , то есть, единиц. Значит, нам нужно отметить эту получившуюся тысячу как , поставив маленькую цифру над цифрами разряда тысяч.
В разряде тысяч у первого слагаемого стоит цифра , а у второго ничего не стоит. Но мы помним, что при отсутствии разрядов в начале числа (слева) нули не пишутся, но подразумевается, что в этих разрядах по единиц. Поэтому мы находим сумму , т.е. единиц разряда тысяч и к ней единицу тысяч, полученную после сложения разрядов сотен. . Записываем эту цифру под чертой в разряде тысяч.
После нахождения суммы чисел методом сложения столбиком, записываем результат решения в исходном строчном примере:
Сложение в столбик нескольких многозначных чисел
Этим способом так же легко можно найти сумму нескольких многозначных чисел.
Сложив простые единицы, мы получим 21, то есть, 2 десятка и 1 единицу. Записываем под чертой в разряде единиц цифру 1, а 2 отмечаем «в уме».
Сложив десятки этих трех чисел, мы получим единиц разряда десятков. Добавив десятка единиц, которые у нас были «в уме», получаем , то есть, и ещё . Под чертой мы записываем в разряде десятков, а так как – не что иное как , то мы отмечаем «единицу в уме», то есть, ставим над всеми тремя числами в разряде сотен маленькую цифру .
Теперь складываем сотен , сотен и сотни . Получается сотен. Добавляем сотню, которая была «в уме» после сложения всех десятков, и у нас выходит , то есть, единиц. Значит, под чертой в разряде сотен мы пишем (так как у нас не получилось ни одной единицы сотен, только десяток сотен), а над всеми числами в разряде тысяч отмечаем дополнительную тысячу.
В разряде тысяч мы находим сумму , это будет , добавляем тысячу, которая получилась после сложения сотен. Получаем тысяч единиц, то есть, тысяч и тысячи. Цифру пишем в разряде тысяч единиц под чертой, а единицу десятка тысяч (наши 10 тысяч единиц) в соответствующем разряде.
Нам осталось сложить десятки тысяч единиц: , и к результату десяток тысяч, получившийся после прошлого шага. У нас вышло десятка тысяч, поэтому в этом разряде под чертой мы пишем цифру .
Нам остается только записать результат в начальном примере:
Хочу обратить внимание, что при сложении в столбик (сложение единиц каждого разряда) совершаются последовательно в одной записи. Я расписывал их отдельными только для лучшего понимания сути процесса сложения. И конечно же, не нужно выделять каждый разряд отдельным цветом. В случае рассмотренных выше примеров все решение выглядит так:
Сумма нескольких слагаемых
При сложении нескольких слагаемых действия можно выполнять в любом порядке.
Пример. Найти сумму трёх слагаемых: 5, 3 и 2.
Решение: Сумму трёх слагаемых можно найти тремя способами:
5 + 3 = 8,
8 + 2 = 10.
5 + 2 = 7,
7 + 3 = 10.
3 + 2 = 5,
5 + 5 = 10.
Если слагаемые поменять местами, то сумма не изменится. Это можно легко проверить, посчитав количество звёздочек, представленных на рисунке:
Можно сначала посчитать зелёные звёздочки, потом жёлтые и сложить полученные результаты, получится 9 звёздочек. Или можно сначала посчитать жёлтые звёздочки, а потом зелёные, в результате сложения жёлтых и зелёных звёздочек сумма будет опять равна 9.
Таким образом, для любых натуральных чисел a и b верно равенство:
a + b = b + a,
выражающее переместительный закон сложения:
От перестановки слагаемых сумма не меняется.
Переместительное свойство сложения
От перестановки слагаемых местами сумма не меняется.
Следовательно, для любых чисел a и b верно равенство:
выражающее переместительное свойство сложения.
6 + 7 = 7 + 6 = 13;
1 + 2 + 3 = 3 + 2 + 1 = 6.
Обратите внимание, что данное свойство можно применять и к суммам, в которых более двух слагаемых.
Сочетательное свойство сложения
Результат сложения трёх и более слагаемых не изменится, если какие-нибудь из слагаемых заменить на их сумму.
Следовательно, для любых чисел a, b и c верно равенство:
a + b + c = a + (b + c) = b + (a + c),
выражающее сочетательное свойство сложения.
6 + 7 + 3 = 6 + (7 + 3) = 6 + 10 = 16;
2 + 13 + 8 + 7 = 2 + 8 + 13 + 7 = (2 + 8) + (13 + 7) = 10 + 20 = 30.
Обратите внимание, что при замене слагаемых их суммой, можно сначала поменять слагаемые местами, потом сгруппировать их и заменить группы слагаемых на суммы, или сразу сгруппировать слагаемые с помощью скобок, не делая дополнительную перестановку:
2 + 13 + 8 + 7 = (2 + 8) + (13 + 7) = 10 + 20 = 30.
Сочетательное свойство используется для удобства и упрощения вычислений при сложении.
Умножение нуля на натуральное число
Число 0 не входит в множество натуральных чисел. Тем не менее, есть смысл рассмотреть свойство умножения нуля на натуральное число. Данное свойство часто используется при умножении натуральных чисел столбиком.
Умножение нуля на натуральное число
Произведение числа 0 и любого натурального числа a равно числу 0.
По определению, произведение 0·a равно сумме, в которой слагаемое 0 повторяется a раз. По свойствам сложения, такая сумма равна нулю.
В результате умножения единицы на нуль получается нуль. Произведение нуля на сколь угодно большое натуральное число также дает в результате нуль.
Справедливо и обратное. Произведение числа на нуль также дает в результате нуль: a·0=0.
Распределительное свойство умножения относительно вычитания
Распределительное свойство умножения относительно вычитания формулируется аналогично данному свойству относительно сложения, следует лишь учитывать знак операции.
Умножения разности чисел b и c на число a равносильно разности произведений чисел a и b и a и c.
Запишем в форме буквенного выражения:
a, b, c – любые натуральные числа.
В предыдущем примере заменим “плюс” на “минус” и запишем:
С другой стороны 4·3-2=4·1=4. Таким образом, справедливость свойства умножения натуральных чисел относительно вычитания показана наглядно.
Если при сложении чисел 5, 2 и 3 заменить какие-нибудь два числа их суммой, то результат сложения не измениться. Это можно легко проверить посчитав звёздочки на картинке:
Можно посчитать зелёные, синие и жёлтые звёздочки отдельно, а потом сложить полученные результаты, получим 10 звёздочек. Или можно посчитать зелёные звёздочки отдельно, а синие и жёлтые вместе и после к зелёным звёздочкам прибавить сумму синих с жёлтыми, в результате получим опять 10 звёздочек.
Из примера следует, что результат сложения не зависит от объединения слагаемых в сумму. Таким образом, для любых натуральных чисел a, b и c верно равенство:
a + b + c = a + (b + c) = b + (a + c)
выражающее сочетательный закон сложения:
Сумма трёх и более слагаемых не изменится, если какие-нибудь из них заменить их суммой.
Умножение единицы на натуральное число
Умножение единицы на натуральное число
Умножение единицы на любое натуральное число в результате дает данное число.
По определению операции умножения, произведение чисел 1 и a равно сумме, в котором слагаемое 1 повторяется a раз.
Умножение натурального числа a на единицу представляет собой сумму, состоящую из одого слагаемого a. Таким образом, переместительное свойство умножения остается справедливым:
Переместительное свойство умножения натуральных чисел
Переместительное свойство часто называют также переместительным законом умножения. По аналогии с переместительным свойством для сложения чисел, оно формулируется так:
В буквенном виде переместительное свойство записывается так: a·b=b·a
a и b – любые натуральные числа.
Возьмем любые два натурльных числа и наглядно покажем, что данное свойство справедливо. Вычислим произведение 2·6. По определению произведения, нужно число 2 повторить 6 раз. Получаем: 2·6=2+2+2+2+2+2=12. Теперь поменяем множители местами. 6·2=6+6=12. Очевидно, переместительный закон выполняется.
На рисунке ниже проиллюститруем переместительное свойство умножения натуральных чисел.
Сочетательное свойство умножения натуральных чисел
Второе название для сочетательного свойства умножения – ассоциативный закон, или ассоциативное свойство. Вот его формулировка.
Умножение числа a на произведение чисел b и c равносильно умножению произведения чисел a и b на число c.
Приведем формулировку в буквенном виде:
a, b, c – любые натуральные числа. Сочетательный закон работает для трех и более натуральных чисел.
Для наглядности приведем пример. Сначала вычислим значение 4·3·2.
Теперь переставим скобки и вычислим значение 4·3·2.
Как видим, теория совпадает с практикой, и свойство справедливо.
Сочетательное свойство умножения также можно проиллюстрировать с помощью рисунка.
Распределительное свойство относительно умножения
Без распределительного свойста не обойтись, когда в математическом выражении одновременно присутствуют операции умножения и сложения. Это свойство определяет связь между умножением и сложением натуральных чисел.
Распределительное свойство умножения относительно сложения
Умножения суммы чисел b и c на число a равносильно сумме произведений чисел a и b и a и c.
Теперь на наглядном примере покажем, как работает это свойство. Вычислим значение выражения 4·3+2.
С другой стороны 4·3+2=4·5=20. Справедливость распределительного свойства умножения относительно сложения показана наглядно.
Для лучшего понимания приведем рисунок, иллюстрирующий суть умножения числа на сумму чисел.